Soft magnetic lithography and giant magnetoresistance in superconducting/ferromagnetic hybrids.
We demonstrate an approach to create a tunable pinning potential in a superconducting/ferromagnetic (SC/FM) hybrid, allowing the switching of their electronic properties through the application of a small magnetic field. Using direct magneto-optical imaging, macroscopic transport, and magnetic measurements, we show that the alignment of stripe domains in the ferromagnet provides a remarkable directionality for the superconducting vortex motion. An analysis of the anisotropic flux motion demonstrates a substantial critical current anisotropy in the superconductor. The possibility of aligning stable lattices of stripe domains in select directions using in-plane magnetic fields allows the realization of soft magnetic lithography for efficient manipulation of supercurrent flow in SC/FM bilayers. Furthermore, in our samples we observed a pronounced magnetoresistance effect yielding 4 orders of magnitude resistivity change in a few millitesla in-plane field.
- Research Organization:
- Argonne National Laboratory (ANL)
- Sponsoring Organization:
- SC
- DOE Contract Number:
- AC02-06CH11357
- OSTI ID:
- 947543
- Report Number(s):
- ANL/MSD/JA-62738
- Journal Information:
- Phys. Rev. B, Journal Name: Phys. Rev. B Journal Issue: 2008 Vol. 78; ISSN 1098-0121
- Country of Publication:
- United States
- Language:
- ENGLISH
Similar Records
Adjustable superconducting anisotropy in superconductor-ferromagnet bilayers.
Adjustable superconducting anisotropy in MoGe-permalloy hybrids.
Giant conductance anisotropy in magnetically coupled ferromagnet-superconductor-ferromagnet structures.
Conference
·
Mon Jun 01 00:00:00 EDT 2009
· IEEE Trans. Appl. Supercond.
·
OSTI ID:962887
Adjustable superconducting anisotropy in MoGe-permalloy hybrids.
Conference
·
Wed Dec 31 23:00:00 EST 2008
· J. Phys.: Conf. Ser.
·
OSTI ID:965751
Giant conductance anisotropy in magnetically coupled ferromagnet-superconductor-ferromagnet structures.
Journal Article
·
Thu Dec 31 23:00:00 EST 2009
· Appl. Phys. Lett.
·
OSTI ID:979000