Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Better relaxations of classical discrete optimization problems.

Conference ·
OSTI ID:947360
A mathematical program is an optimization problem expressed as an objective function of multiple variables subject to set of constraints. When the optimization problem has specific structure, the problem class usually has a special name. A linear program is the optimization of a linear objective function subject to linear constraints. An integer program is a linear program where some of the variables must take only integer values. A semidefinite program is a linear program where the variables are arranged in a matrix and for all feasible solutions, this matrix must be positive semidefinite. There are general-purpose solvers for each of these classes of mathematical program. There are usually many ways to express a problem as a correct, say, linear program. However, equivalent formulations can have significantly different practical tractability. In this poster, we present new formulations for two classic discrete optimization problems, maximum cut (max cut) and the graphical traveling salesman problem (GTSP), that are significantly stronger, and hence more computationally tractable, than any previous formulations of their class. Both partially answer longstanding open theoretical questions in polyhedral combinatorics.
Research Organization:
Sandia National Laboratories
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
947360
Report Number(s):
SAND2008-5337C
Country of Publication:
United States
Language:
English

Similar Records

Dikin-type algorithms for dextrous grasping force optimization
Journal Article · Sat Aug 01 00:00:00 EDT 1998 · International Journal of Robotics Research · OSTI ID:665353

Next-generation Algorithms for Assessing Infrastructure Vulnerability and Optimizing System Resilience
Technical Report · Fri May 01 00:00:00 EDT 2015 · OSTI ID:1183056

Final report, DOE Grant DE-FG02-98ER25352, Computational semidefinite programming
Technical Report · Thu Sep 05 00:00:00 EDT 2002 · OSTI ID:806634