Interactions between X-ray induced transient defects and pre-existing damage precursors in DKDP crystals
Large-aperture laser systems, currently designed to achieve high energy densities at the target location (exceeding {approx} 10{sup 11} J/m{sup 3}), will enable studies of the physics of matter and radiation under extreme conditions. As a result, their optical components, such as the frequency conversion crystals (KDP/DKDP), may be exposed to X-rays and other ionizing radiation. This in turn may lead to a change in the damage performance of these materials as they may be affected by radiation-induced effects by either forming new damage initiation centers or interacting with the pre-existing damage initiating defects (so-called damage precursors). We present an experimental study on the laser-induced bulk damage performance at 355-nm of DKDP crystals following X-ray irradiation at room temperature. Results indicate that the damage performance of the material is affected by exposure to X-rays. We attribute this behavior to a change in the physical properties of the precursors which, in turn, affect their individual damage threshold.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 945838
- Report Number(s):
- LLNL-PROC-408308
- Country of Publication:
- United States
- Language:
- English
Similar Records
Investigation of laser-induced damage in DKDP under multi-color irradiation
A new expedited approach to evaluate the importance of different crystal growth parameters on laser damage performance in KDP and DKDP