The National Ignition Facility: Studying the Stars in the Laboratory
The National Ignition Facility, to be completed in 2009, will be the highest energy laser ever built. The high temperatures and densities it will produce will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as in nuclear astrophysics, X-ray astronomy, hydrodynamics, and planetary science. The National Ignition Facility, NIF (1), located at Lawrence Livermore National Lab, (LLNL) is expected to produce inertial confinement fusion (ICF) by delivering sufficient laser energy to compress and heat a millimeter-radius pellet of DT sufficiently to produce fusion to {sup 4}He+neutron and 17.6 MeV per reaction. NIF will be completed by March, 2009, at which time a National Ignition Campaign (2), NIC, a series of experiments to optimize the ICF parameters, will begin. Although NIF is a research facility, a successful NIC would have implications for future energy sources. In addition to the goal of ICF, NIF will support programs in stockpile stewardship. However, the conditions that NIF creates will simulate those inside stars and planets sufficiently closely to provide compelling motivation for experiments in basic high-energy-density (HED) science especially, for the first time, in nuclear astrophysics.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 945651
- Report Number(s):
- LLNL-CONF-407387
- Country of Publication:
- United States
- Language:
- English
Similar Records
IGNITION AND FRONTIER SCIENCE ON THE NATIONAL IGNITION FACILITY
The National Ignition Facility (NIF) and the National Ignition Campaign (NIC)