skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: X-RAY NONLINEAR OPTICAL PROCESSES IN ATOMS USING A SELF-AMPLIFIED SPONTANEOUS EMISSION FREE-ELECTRON LASER

Abstract

X-ray free electron lasers (xFEL) will open new avenues to the virtually unexplored territory of non-linear interactions of x rays with matter. Initially xFELs will be based on the principle of self-amplified spontaneous emission (SASE). Each SASE pulse consists of a number of coherent intensity spikes of random amplitude, i.e. the process is chaotic and pulses are irreproducible. The coherence time of SASE xFELs will be a few femtoseconds for a photon energy near 1 keV. The importance of coherence properties of light in non-linear optical processes was theoretically discovered in the early 1960s. In this contribution we will illustrate the impact of field chaoticity on x-ray non-linear optical processes on neon for photon energies around 1 keV and intensities up to 10{sup 18} W/cm{sup 2}. Resonant and non-resonant processes are discussed. The first process to be addressed is the formation of a double-core hole in neon by photoionization with x rays above 1.25 keV energy. In contrast to the long-wavelength regime, non-linear optical processes in the x-ray regime are characterized in general by sequential single-photon single-electron interactions. Despite this fact, the sequential absorption of multiple x-ray photons depends on the statistical properties of the radiation field. Treating the xmore » rays generated by a SASE FEL as fully chaotic, a quantum-mechanical analysis of inner-shell two-photon absorption is performed. By solving a system of time-dependent rate equations, we demonstrate that double-core hole formation in neon via x-ray two-photon absorption is enhanced by chaotic photon statistics. At an intensity of 10{sup 16} W/cm{sup 2}, the statistical enhancement is about 30%, much smaller than typical values in the optical regime. The second part of this presentation discusses the resonant Auger effect of atomic neon at the 1s-3p transition (at 867.1 eV). For low X-ray intensity, the excitation process 1s {yields} 3p in Neon can be treated perturbatively. The core-hole excited 1s{sup -1} 3p state is embedded in the continuum and decays via Auger-process on the timescale of approximately 5 fs. Increasing the x-ray intensity above 1.5 x 10{sup 18} W/cm{sup 2}, a peak intensity accessible with xFEL sources in the near future, x-ray induced emission from 3p back to 1s becomes possible, i.e. Rabi oscillations between these two levels can be induced. For the numerical analysis of this process, an effective two-level model, including a description of the resonant Auger decay process, is employed. The observation of x-ray-driven atomic populations dynamics in the time domain is challenging for chaotic xFEL pulses. In addition to requiring single-shot measurements, sub-femtosecond temporal resolution would be needed. The Rabi oscillations will, however, be imprinted on the kinetic energy distribution of the resonant Auger electron (see Fig. 1). Measuring the resonant Auger-electron line profile will provide information on both atomic population dynamics and x-ray pulse properties.« less

Authors:
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
945635
Report Number(s):
LLNL-PROC-406394
TRN: US0901036
DOE Contract Number:  
W-7405-ENG-48
Resource Type:
Conference
Resource Relation:
Conference: Presented at: ICOMP - 11th International Conference on Multiphoton Processes, Heidelberg, Germany, Sep 18 - Sep 23, 2008
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; ABSORPTION; ATOMS; AUGER EFFECT; DECAY; ELECTRONS; EXCITATION; FREE ELECTRON LASERS; KINETIC ENERGY; MULTI-PHOTON PROCESSES; NEON; NUMERICAL ANALYSIS; OSCILLATIONS; PHOTOIONIZATION; PHOTONS; POPULATION DYNAMICS; RADIATIONS; RESOLUTION; STATISTICS

Citation Formats

Rohringer, N. X-RAY NONLINEAR OPTICAL PROCESSES IN ATOMS USING A SELF-AMPLIFIED SPONTANEOUS EMISSION FREE-ELECTRON LASER. United States: N. p., 2008. Web.
Rohringer, N. X-RAY NONLINEAR OPTICAL PROCESSES IN ATOMS USING A SELF-AMPLIFIED SPONTANEOUS EMISSION FREE-ELECTRON LASER. United States.
Rohringer, N. Fri . "X-RAY NONLINEAR OPTICAL PROCESSES IN ATOMS USING A SELF-AMPLIFIED SPONTANEOUS EMISSION FREE-ELECTRON LASER". United States. https://www.osti.gov/servlets/purl/945635.
@article{osti_945635,
title = {X-RAY NONLINEAR OPTICAL PROCESSES IN ATOMS USING A SELF-AMPLIFIED SPONTANEOUS EMISSION FREE-ELECTRON LASER},
author = {Rohringer, N},
abstractNote = {X-ray free electron lasers (xFEL) will open new avenues to the virtually unexplored territory of non-linear interactions of x rays with matter. Initially xFELs will be based on the principle of self-amplified spontaneous emission (SASE). Each SASE pulse consists of a number of coherent intensity spikes of random amplitude, i.e. the process is chaotic and pulses are irreproducible. The coherence time of SASE xFELs will be a few femtoseconds for a photon energy near 1 keV. The importance of coherence properties of light in non-linear optical processes was theoretically discovered in the early 1960s. In this contribution we will illustrate the impact of field chaoticity on x-ray non-linear optical processes on neon for photon energies around 1 keV and intensities up to 10{sup 18} W/cm{sup 2}. Resonant and non-resonant processes are discussed. The first process to be addressed is the formation of a double-core hole in neon by photoionization with x rays above 1.25 keV energy. In contrast to the long-wavelength regime, non-linear optical processes in the x-ray regime are characterized in general by sequential single-photon single-electron interactions. Despite this fact, the sequential absorption of multiple x-ray photons depends on the statistical properties of the radiation field. Treating the x rays generated by a SASE FEL as fully chaotic, a quantum-mechanical analysis of inner-shell two-photon absorption is performed. By solving a system of time-dependent rate equations, we demonstrate that double-core hole formation in neon via x-ray two-photon absorption is enhanced by chaotic photon statistics. At an intensity of 10{sup 16} W/cm{sup 2}, the statistical enhancement is about 30%, much smaller than typical values in the optical regime. The second part of this presentation discusses the resonant Auger effect of atomic neon at the 1s-3p transition (at 867.1 eV). For low X-ray intensity, the excitation process 1s {yields} 3p in Neon can be treated perturbatively. The core-hole excited 1s{sup -1} 3p state is embedded in the continuum and decays via Auger-process on the timescale of approximately 5 fs. Increasing the x-ray intensity above 1.5 x 10{sup 18} W/cm{sup 2}, a peak intensity accessible with xFEL sources in the near future, x-ray induced emission from 3p back to 1s becomes possible, i.e. Rabi oscillations between these two levels can be induced. For the numerical analysis of this process, an effective two-level model, including a description of the resonant Auger decay process, is employed. The observation of x-ray-driven atomic populations dynamics in the time domain is challenging for chaotic xFEL pulses. In addition to requiring single-shot measurements, sub-femtosecond temporal resolution would be needed. The Rabi oscillations will, however, be imprinted on the kinetic energy distribution of the resonant Auger electron (see Fig. 1). Measuring the resonant Auger-electron line profile will provide information on both atomic population dynamics and x-ray pulse properties.},
doi = {},
url = {https://www.osti.gov/biblio/945635}, journal = {},
number = ,
volume = ,
place = {United States},
year = {2008},
month = {8}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: