Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Mitigation of cesium and cobalt contamination on the surfaces of RAM packages.

Conference ·
OSTI ID:945166

Techniques for mitigating the adsorption of {sup 137}Cs and {sup 60}Co on metal surfaces (e.g. RAM packages) exposed to contaminated water (e.g. spent-fuel pools) have been developed and experimentally verified. The techniques are also effective in removing some of the {sup 60}Co and {sup 137}Cs that may have been adsorbed on the surfaces after removal from the contaminated water. The principle for the {sup 137}Cs mitigation technique is based upon ion-exchange processes. In contrast, {sup 60}Co contamination primarily resides in minute particles of crud that become lodged on cask surfaces. Crud is an insoluble Fe-Ni-Cr oxide that forms colloidal-sized particles as reactor cooling systems corrode. Because of the similarity between Ni{sup 2+} and Co{sup 2+}, crud is able to scavenge and retain traces of cobalt as it forms. A number of organic compounds have a great specificity for combining with nickel and cobalt. Ongoing research is investigating the effectiveness of chemical complexing agent EDTA with regard to its ability to dissolve the host phase (crud) thereby liberating the entrained {sup 60}Co into a solution where it can be rinsed away.

Research Organization:
Sandia National Laboratories
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
945166
Report Number(s):
SAND2004-4461C
Country of Publication:
United States
Language:
English

Similar Records

Mitigation of cesium and cobalt contamination on the surfaces of RAM packages.
Journal Article · Mon Jan 31 23:00:00 EST 2005 · Proposed for publication in the International Journal of Packaging, Transport, Storage and Security of Radioactive Materials. · OSTI ID:990983

Transportation cask contamination weeping: A program leading to prevention
Conference · Mon Dec 31 23:00:00 EST 1990 · OSTI ID:7150042

THE REMOVAL OF CESIUM-137 AND STRONTIUM-90 FROM SCAVENGED BISMUTH PHOSPHATE SOLUTIONS
Technical Report · Thu Jan 31 23:00:00 EST 1957 · OSTI ID:4266701