skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes

Journal Article · · Proceedings of the National Academy of Sciences of the United States of America, 105(16):6156-6161

Cyanobacteria are oxygenic photosynthetic organisms, and the only prokaryotes known to have a circadian cycle. Unicellular diazotrophic cyanobacteria such as Cyanothece 51142 can fix atmospheric nitrogen, a process exquisitely sensitive to oxygen. Thus, the intracellular environment of Cyanothece oscillates between aerobic and anaerobic conditions during a day-night cycle. This is accomplished by temporal separation of two processes: photosynthesis during the day, and nitrogen fixation at night. While previous studies have examined periodic changes transcript levels for a limited number of genes in Cyanothece and other unicellular diazotrophic cyanobacteria, a comprehensive study of transcriptional activity in a nitrogen-fixing cyanobacterium is necessary to understand the impact of the temporal separation of photosynthesis and nitrogen fixation on global gene regulation and cellular metabolism. We have examined the expression patterns of nearly 5000 genes in Cyanothece 51142 during two consecutive diurnal periods. We found that ~30% of these genes exhibited robust oscillating expression profiles. Interestingly, this set included genes for almost all central metabolic processes in Cyanothece. A transcriptional network of all genes with significantly oscillating transcript levels revealed that the majority of genes in numerous individual pathways, such as glycolysis, pentose phosphate pathway and glycogen metabolism, were co-regulated and maximally expressed at distinct phases during the diurnal cycle. Our analyses suggest that the demands of nitrogen fixation greatly influence major metabolic activities inside Cyanothece cells and thus drive various cellular activities. These studies provide a comprehensive picture of how a physiologically relevant diurnal light-dark cycle influences the metabolism in a photosynthetic bacterium

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
944504
Report Number(s):
PNNL-SA-58424; PNASA6; 16720; 14398; KP1704020; TRN: US200902%%805
Journal Information:
Proceedings of the National Academy of Sciences of the United States of America, 105(16):6156-6161, Vol. 105, Issue 16; ISSN 0027-8424
Country of Publication:
United States
Language:
English