Lockin transition, irreversibility field, and Josephson vortex penetration depth in {Kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br.
Penetration depth measurements in {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br are reported for fields {Eta} up to 1 T in magnitude and arbitrary orientation. For {Eta} nearly parallel to the conducting planes, the vortex penetration depth is nonmonotonic with field, indicating a lockin effect. Qualitatively similar behavior is observed in BSCCO. The data indicate a much stronger interaction between vortex kinks than predicted. In the field range over which vortex kinks are first formed, the response is hysteretic with an irreversibility field equal to the lower critical field. Both fields show positive curvature with temperature, suggesting relaxation over surface barriers. Josephson vortices exhibit single vortex pinning below 300 Oe. Between 300 and 1500 Oe, the Josephson vortex penetration depth changes dramatically, becoming proportional to both {Eta} and to the zero field interplane penetration depth, {lambda}{sub perpendicular}(T)-{lambda}{sub perpendicular}(0).
- Research Organization:
- Argonne National Laboratory (ANL)
- Sponsoring Organization:
- ER
- DOE Contract Number:
- AC02-06CH11357
- OSTI ID:
- 942402
- Report Number(s):
- ANL/CHM/JA-31065
- Journal Information:
- Physica C, Journal Name: Physica C Journal Issue: 1999 Vol. 321; ISSN 0921-4534; ISSN PHYCE6
- Country of Publication:
- United States
- Language:
- ENGLISH
Similar Records
Josephson junction in a thin film
Magnetic field of Josephson vortices outside superconductors