skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MATRIX 2 RESULTS OF THE FY07 ENHANCED DOE HIGH-LEVEL WASTE MELTER THROUGHPUT STUDIES AT SRNL

Technical Report ·
DOI:https://doi.org/10.2172/941108· OSTI ID:941108

High-level waste (HLW) throughput (i.e., the amount of waste processed per unit time) is a function of two critical parameters: waste loading (WL) and melt rate. For the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site and the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). The objective of this study was to generate supplemental validation data that could be used to determine the applicability of the current liquidus temperature (TL) model to expanded DWPF glass composition regions of interest based on higher WLs. Two specific flowsheets were used in this study to provide such insight: (1) Higher WL glasses (45 and 50%) based on future sludge batches that have (and have not) undergone the Al-dissolution process. (2) Coupled operations supported by the Salt Waste Processing Facility (SWPF), which increase the TiO{sub 2} concentration in glass to greater than 2 wt%. Glasses were also selected to address technical issues associated with Al{sub 2}O{sub 3} solubility, nepheline formation, and homogeneity issues for coupled operations. A test matrix of 28 glass compositions was developed to provide insight into these issues. The glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD), TL measurement and the Product Consistency Test (PCT). The results of this study are summarized below: (1) TiO{sub 2} concentrations up to {approx} 3.5 wt% were retained in DWPF type glasses, where retention is defined as the absence of crystalline TiO{sub 2} (i.e., unreacted or undissolved) in the as-fabricated glasses. Although this TiO{sub 2} content does not bound the projected SWPF high output flowsheet (up to 6 wt% TiO{sub 2} may be required in glass), these data demonstrate the potential for increasing the TiO{sub 2} limit in glass above the current limit of 2 wt% (based strictly on retention or solubility). (2) For those study glasses that had very close compositional overlap with the model development and/or model validation ranges of the current DWPF TL model (except TiO{sub 2} and MgO concentrations), there was very little difference in the predicted and measured TL values. Even though the TiO{sub 2} concentrations were above the 2 wt% upper limit, the results indicate that the current T{sub L} model is applicable in this compositional region with TiO{sub 2} contents up to approximately 3.5 wt%. (3) As the target glass compositions diverge from the model development and validation ranges, the T{sub L} data suggest that the model under-predicted the measured values. These discrepancies imply that there are individual oxides or oxide combinations that need to be accounted for in the model. These oxides include B{sub 2}O{sub 3}, SiO{sub 2}, MnO, TiO{sub 2} and/or their combinations. More data would be required to fill in these anticipated DWPF compositional regions for higher WL glasses so that the model coefficients could be refit to account for these differences. (4) Based on PCT response of HWL-21 and HWL-22 (two glasses that were prone to nepheline formation) it appears that increasing the B{sub 2}O{sub 3} concentration in glass does not consistently suppress the formation of nepheline in glasses with higher Al{sub 2}O{sub 3} and/or Na{sub 2}O content. Although the chemical durabilities of the quenched versions of these glasses were very acceptable, the canister centerline cooled (ccc) glasses exhibited a considerable decrease in durability and were found to contain nepheline via XRD. In fact, one of the glasses had a release that was 5 times greater than that of the Environmental Assessment (EA) benchmark glass. These results suggest a need for a more fundamental understanding of the compositional and kinetic effects of nepheline formation in high WL glasses. (5) Data have been generated in support of the replacement of the homogeneity constraint with the Al{sub 2}O{sub 3} and/or sum of alkali constraints for coupled operations as previously completed for sludge-only operations. This strategy should be pursued for either the compositional region anticipated for coupled operations or as part of the variability study for each sludge batch. The PCT responses of the study glasses suggest a high probability that this strategy could be defended at some later date.

Research Organization:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC09-08SR22470
OSTI ID:
941108
Report Number(s):
SRNS-STI-2008-00055; TRN: US0807261
Country of Publication:
United States
Language:
English