skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hybrid Surface Mesh Adaptation for Climate Modeling

Abstract

Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, less-popular method of spatial adaptivity is called “mesh motion” (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is produced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is designed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.

Authors:
; ;
Publication Date:
Research Org.:
Idaho National Laboratory (INL)
Sponsoring Org.:
USDOE
OSTI Identifier:
940835
Report Number(s):
INL/JOU-07-13452
TRN: US200824%%334
DOE Contract Number:
DE-AC07-99ID-13727
Resource Type:
Journal Article
Resource Relation:
Journal Name: Numerical Mathematics: Theory, Methods and Applications; Journal Volume: 1; Journal Issue: 4
Country of Publication:
United States
Language:
English
Subject:
99 GENERAL AND MISCELLANEOUS; ALGORITHMS; CLIMATES; FLEXIBILITY; PHYSICS; SIMULATION; climate modeling; mesh adaptation; mesh optimization; surface mesh generation

Citation Formats

Ahmed Khamayseh, Valmor de Almeida, and Glen Hansen. Hybrid Surface Mesh Adaptation for Climate Modeling. United States: N. p., 2008. Web.
Ahmed Khamayseh, Valmor de Almeida, & Glen Hansen. Hybrid Surface Mesh Adaptation for Climate Modeling. United States.
Ahmed Khamayseh, Valmor de Almeida, and Glen Hansen. Wed . "Hybrid Surface Mesh Adaptation for Climate Modeling". United States. doi:.
@article{osti_940835,
title = {Hybrid Surface Mesh Adaptation for Climate Modeling},
author = {Ahmed Khamayseh and Valmor de Almeida and Glen Hansen},
abstractNote = {Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, less-popular method of spatial adaptivity is called “mesh motion” (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is produced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is designed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.},
doi = {},
journal = {Numerical Mathematics: Theory, Methods and Applications},
number = 4,
volume = 1,
place = {United States},
year = {Wed Oct 01 00:00:00 EDT 2008},
month = {Wed Oct 01 00:00:00 EDT 2008}
}
  • Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, less-popular method of spatial adaptivity is called "mesh motion" (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining thesemore » two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is produced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is designed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.« less
  • The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less
  • This paper describes a new method for numerical modeling of extraction of high-current ion beams from a plasma source. The challenge in the application is to satisfy simultaneously requirements for space-charge-limited flow and uniform ion flux. The plasma surface must assume a special shape that is not known in advance. The method involves the use of finite-element techniques coupled with a dynamic conformal mesh. Starting from an initial estimate, the flexible mesh is shifted to achieve uniform flux over the emission surface. The approach achieves high accuracy and has the versatility to handle complex emission surfaces in gridded guns. Inmore » contrast to trial-and-error approaches, the method proceeds directly to the optimum solution. The technique can also be applied to determine cathode shapes for uniform-flux electron guns. Benchmark calculations using the Trak two-dimensional ray-tracing code are described. The program automatically carries out the surface search.« less
  • Formal planning for climate change adaptation is emerging rapidly at a range of geo-political scales. This first generation of adaptation plans provides useful information regarding how institutions are framing the issue of adaptation and the range of processes that are recognized as being part of an adaptation response. To better understand adaptation planning among developed nations, a set of 57 adaptation plans from Australia, the United Kingdom and the United States was evaluated against a suite of 19 planning processes identified from existing guidance instruments for adaptation planning. Total scores among evaluated plans ranged from 16% of the maximum possiblemore » score to 61%, with an average of 37%. These results suggest adaptation plans are largely under-developed. Critical weaknesses in adaptation planning are related to limited consideration for non-climatic factors as well as neglect for issues of adaptive capacity including entitlements to various forms of capital needed for effective adaptation. Such gaps in planning suggest there are opportunities for institutions to make better use of existing guidance for adaptation planning and the need to consider the broader governance context in which adaptation will occur. In addition, the adaptation options prescribed by adaptation plans reflect a preferential bias toward low-risk capacity-building (72% of identified options) over the delivery of specific actions to reduce vulnerability. To the extent these findings are representative of the state of developed nation adaptation planning, there appear to be significant deficiencies in climate change preparedness, even among those nations often assumed to have the greatest adaptive capacity.« less
  • In this paper an approach to land-surface modeling is presented that allows us to view the watershed as the fundamental hydrologic unit. The analytic form of TOPMODEL equations are incorporated into the soil column framework and the resulting model is used to predict the saturated fraction of the watershed and baseflow in a consistent fashion. Soil moisture heterogeneity represented by saturated lowlands subsequently impacts the partitioning of surface fluxes, including evapotranspiration and runoff. The approach is computationally efficient, allows for a greatly improved simulation of the hydrologic cycle, and is easily coupled into the existing framework of the current generationmore » of single column land-surface models. Because this approach uses the statistics of the topography rather than the details of the topography, it is compatible with the large spatial scales of today`s regional and global climate models. Five years of meteorological and hydrological data from the Sleepers River watershed located in the northeastern United States where winter snow cover is significant were used to drive the new model. Site validation data were sufficient to evaluate model performance with regard to various aspects of the watershed water balance, including snowpack growth/ablation, the spring snowmelt hydrograph, storm hydrographs, and the seasonal development of watershed evapotranspiration and soil moisture. 67 refs., 12 figs., 3 tabs.« less