Simulation of a Standing-Wave Free-Electron Laser
The standing-wave free-electron laser (FEL) differs from a conventional linear-wiggler microwave FEL in using irises along the wiggler to form a series of standing-wave cavities and in reaccelerating the beam between cavities to maintain the average energy. The device has been proposed for use in a two-beam accelerator (TBA) because microwave power can be extracted more effectively than from a traveling-wave FEL. The standing-wave FEL is modeled in the continuum limit by a set of equations describing the coupling of a one-dimensional beam to a TE{sub 01} rectangular-waveguide mode. Analytic calculations and numerical simulations are used to determine the time variation of the reacceleration field and the prebunching required so that the final microwave energy is the same in all cavities. The microwave energy and phase are found to be insensitive to modest spreads in the beam energy and phase and to errors in the reacceleration field and the beam current, but the output phase appears sensitive to beam-energy errors and to timing jitter.
- Research Organization:
- Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US)
- Sponsoring Organization:
- Accelerator& Fusion Research Division
- DOE Contract Number:
- AC02-05CH11231
- OSTI ID:
- 940784
- Report Number(s):
- LBNL-1083E
- Country of Publication:
- United States
- Language:
- English
Similar Records
Phase stability of a standing-wave free-electron laser
Standing-Wave Free-Electron Laser Two-Beam Accelerator