MOLECULAR DYNAMICS SIMULATIONS OF DISPLACEMENT CASCADES IN MOLYBDENUM
Molecular dynamics calculations have been employed to simulate displacement cascades in neutron irradiated Mo. A total of 90 simulations were conducted for PKA energies between 1 and 40 keV and temperatures from 298 to 923K. The results suggest very little effect of temperature on final defect count and configuration, but do display a temperature effect on peak defect generation prior to cascade collapse. Cascade efficiency, relative to the NRT model, is computed to lie between 1/4 and 1/3 in agreement with simulations performed on previous systems. There is a tendency for both interstitials and vacancies to cluster together following cascade collapse producing vacancy rich regions surrounded by interstitials. Although coming to rest in close proximity, the point defects comprising the clusters generally do not lie within the nearest neighbor positions of one another, except for the formation of dumbbell di-interstitials. Cascades produced at higher PKA energies (20 or 40 keV) exhibit the formation of subcascades.
- Research Organization:
- Bettis Atomic Power Laboratory (BAPL), West Mifflin, PA
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC11-98PN38206
- OSTI ID:
- 940236
- Report Number(s):
- B-T-3522
- Country of Publication:
- United States
- Language:
- English
Similar Records
Subcascade formation in displacement cascade simulations: Implications for fusion reactor materials
Molecular dynamics studies of defect production and clustering in energetic displacement cascades in copper