skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carbon dioxide separation through supported ionic liquids membranes in polymeric matrixes

Conference ·
OSTI ID:938555

As compared to other gas separation techniques, membranes have several advantages which can include low capital cost, relatively low energy usage and scalability. While it could be possible to synthesize the ideal polymer for membrane separation of carbon dioxide from fuel gas, it would be very intensive in terms of money and time. Supported liquid membranes allow the researcher to utilize the wealth of knowledge available on liquid properties. Ionic liquids, which can be useful in capturing CO2 from fuel gas because they posses high CO2 solubility in the ionic liquid relative to H2, are an excellent candidate for this type of membrane. Ionic liquids are not susceptible to evaporation due to their negligible vapor pressure and thus eliminate the main problem typically seen with supported liquid membranes. A study has been conducted evaluating the use of the ionic liquid 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, the ionic liquid was synthesized and characterized at the University of Notre Dame, incorporated into a polymeric matrix, and tested at the National Energy Technology Laboratory. Initial results have been very promising with calculated CO2 permeabilities as high as 950 barrers and significant improvements in CO2/H2 selectivity over the unmodified polymer at 37 oC along with promising results at elevated temperatures. In addition to performance, the study included examining the choice of polymeric supports on performance and membrane stability in more realistic operating conditions. Also included in this study was an evaluation of novel approaches to incorporate the ionic liquid into polymer matrices to optimize the performance and stability of the membranes.

Research Organization:
National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR
Sponsoring Organization:
USDOE - Office of Fossil Energy (FE); University of Notre Dame, Notre Dame, IN
DOE Contract Number:
None cited
OSTI ID:
938555
Report Number(s):
DOE/NETL-IR-2006-152; NETL-TPR-1449; TRN: US200820%%164
Resource Relation:
Conference: 23rd Annual International Pittsburgh Coal Conference, Pittsburgh, PA, Sept. 25-28, 2006
Country of Publication:
United States
Language:
English