Effects of Fuel Cell Anode Recycle on Catalytic Fuel Reforming
Journal Article
·
· Journal of Power Sources
The presence of steam in the reactant gas of a catalytic fuel reformer decreases the formation of carbon, minimizing catalyst deactivation. However, the operation of the reformer without supplemental water reduces the size, weight, cost, and overall complexity of the system. The work presented here examines experimentally two options for adding steam to the reformer inlet: (I) recycle of a simulated fuel cell anode exit gas (comprised of mainly CO2, H2O, and N2 and some H2 and CO) and (II) recycle of the reformate from the reformer exit back to the reformer inlet (mainly comprised of H2, CO, and N2 and some H2O and CO2). As expected, anode gas recycle reduced the carbon formation and increased the hydrogen concentration in the reformate. However, reformer recycle was not as effective due principally to the lower water content in the reformate compared to the anode gas. In fact, reformate recycle showed slightly increased carbon formation compared to no recycle. In an attempt to understand the effects of individual gases in these recycle streams (H2, CO, CO2, N2, and H2O), individual gas species were independently introduced to the reformer feed.
- Research Organization:
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR
- Sponsoring Organization:
- USDOE - Office of Fossil Energy (FE)
- OSTI ID:
- 937585
- Report Number(s):
- DOE/NETL-IR-2007-249; NETL-TPR-1704
- Journal Information:
- Journal of Power Sources, Journal Name: Journal of Power Sources Journal Issue: 2 Vol. 168; ISSN 0378-7753
- Publisher:
- Elsevier BV
- Country of Publication:
- United States
- Language:
- English
Similar Records
Effects of fuel cell anode recycle on catalytic fuel reforming
Energetically enhanced reforming process
Integrated process for the production of methanol and ammonia
Journal Article
·
Sun Dec 31 23:00:00 EST 2006
· Journal of Power Sources
·
OSTI ID:1013553
Energetically enhanced reforming process
Patent
·
Tue Jun 25 00:00:00 EDT 2019
·
OSTI ID:1568505
Integrated process for the production of methanol and ammonia
Patent
·
Mon Feb 15 23:00:00 EST 1982
·
OSTI ID:5485722