skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A QM/MM Metadynamics Study of the Direct Decarboxylation Mechanism for Orotidine-5'-monophosphate Decarboxylase using Two Different QM Regions: Acceleration too Small to Explain Rate of Enzyme Catalysis

Journal Article · · Journal of Physical Chemistry B, 111(43):12573-12581
DOI:https://doi.org/10.1021/jp074858n· OSTI ID:935068

Despite decades of study, the mechanism of orotidine-5'-monophosphate decarboxylase (ODCase) remains unresolved. A computational investigation of the direct decarboxylation mechanism has been performed using mixed quantum mechanical/molecular mechanical (QM/MM) dynamics simulations. The study was performed with the program CP2K that integrates classical dynamics and ab initio dynamics based on the Born-Oppenheimer approach. Two different QM regions were explored. It was found that the size of the QM region has a dramatic effect on the calculated reaction barrier. The free energy barriers for decarboxylation of orotidine-5'-monophosphate (OMP) in solution and in the enzyme were determined with the metadynamics method to be 40 kcal/mol and 33 kcal/mol, respectively. The calculated change in activation free energy (ΔΔG±) on going from solution to the enzyme is therefore -7 kcal/mol, far less than the experimental change of -23 kcal/mol (for kcat/kuncat Radzicka, A.; Wolfenden, R., Science. 1995, 267, 90-92). These results do not support the direct decarboxylation mechanism in the enzyme. Funding was provided by the University of California Lawrence Livermore National Laboratory (LLNL) and the National Institutes of Health (NIH). Part of this work was performed under the auspices of the U.S. Department of Energy by LLNL under contract No. W-7405-Eng-48. Computer resources were provided by Livermore Computing.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
935068
Report Number(s):
PNNL-SA-55599; KC0301020; TRN: US200815%%17
Journal Information:
Journal of Physical Chemistry B, 111(43):12573-12581, Vol. 111, Issue 43
Country of Publication:
United States
Language:
English