Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Experimental and numerical study of flashback in the SimVal Combustion Chamber

Conference ·
The effects of hydrogen addition on a lean-premixed swirl-stabilized combustor operating on natural gas and air were studied. Measurements of equivalence ratio and hydrogen concentration at flame flashback have been made at pressures ranging from 1 to 8 atmospheres, hydrogen concentration in the fuel of 60 to 100% and inlet velocities of 10, 20, 40 and 80 m/s. Increasing the hydrogen concentration in the fuel was found to significantly lower the equivalence ratio at flashback. This was believed to be the result of the much higher flame speed for hydrogen compared to methane. Increasing pressure was found to also decrease the equivalence ratio at flashback, while increasing the inlet velocity was found to increase the equivalence ratio at flashback. Two of these experiments were reproduced numerically using the FLUENTTM software. Numerical data were found to be in good agreement with experimental data at atmospheric pressure. The flashback process was investigated using the numerical data.
Research Organization:
National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)
Sponsoring Organization:
USDOE - Office of Fossil Energy (FE)
OSTI ID:
933145
Report Number(s):
DOE/NETL-IR-2008-070; NETL-TPR-1819
Country of Publication:
United States
Language:
English