Composition Mapping of Co-Pt-Ti-O Perpendicular Magnetic Recording Media by Simultaneous EDS and EELS Spectrum Imaging
- ORNL
- Stanford University
For nearly a decade core-loss elemental mapping by energy-filtered transmission electron microscopy (EFTEM) with {approx}1 nm resolution has contributed greatly to the understanding of Co(Cr)-based thin-film longitudinal magnetic recording media for computer hard disks. Intergranular layers of non-ferromagnetic Cr-enriched material a few nanometers thick are critical for optimum performance since they decouple the magnetic exchange between grains allowing the magnetization within individual grains to be switched independently, as required for high-density recording of data. Modern perpendicular thin-film recording media, which allow higher recording densities than traditional longitudinal media, have a similar columnar grain structure with nonferromagnetic material separating and decoupling the grains. The present work involves plan-view TEM characterization of back-thinned Co-Pt media (Co/Pt{approx}4) with 6 levels of co-sputtered TiO{sub 2} from 0 to 43 vol%. The layer structure of the media was: polished Al substrate/6 nm seed layers/50 nm soft magnetic underlayer/14 nm Ru underlayer/12 nm Co-Pt-TiO{sub 2}/1 nm C overcoat.
- Research Organization:
- Oak Ridge National Laboratory (ORNL); Shared Research Equipment Collaborative Research Center
- Sponsoring Organization:
- SC USDOE - Office of Science (SC)
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 931891
- Country of Publication:
- United States
- Language:
- English
Similar Records
High-Resolution Analytical TEM and Energy-Filtered Imaging of CoPt-Oxide Perpendicular Magnetic Recording Media
Chromium segregation in CoCrTa/Cr and CoCrPt/Cr thin films for longitudinal recording media