skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Current and potential U.S. Corn Stover Supplies

Abstract

Agricultural residues such as corn (Zea mays L.) stover are a potential feedstock for bioenergy and bio-based products that could reduceU.S. dependence on foreign oil. Collection of such residues must take into account concerns that residue removal could increase erosion, reduce crop productivity, and deplete soil carbon and nutrients. This article estimates where and how much corn stover can be collected sustainably in the USA using existing commercial equipment and estimates costs of that collection. Erosion constraints to collection were considered explicitly, and crop productivity and soil nutrient constraints were considered implicitly, by recognizing the value of residues for maintaining soil moisture and including the cost of fertilizer to replace nutrients removed. Possible soil carbon loss was not considered in the analysis. With an annual production of 196 million Mg of corn grain (about9.2 billion bushels), the USA produces 196 million Mg of stover. Under current rotation and tillage practices, about 30% of this stover could be collected for less than $33 per Mg, taking into consideration erosion and soil moisture concerns and nutrient replacement costs. Wind erosion is a major constraint to stover collection. Analysis suggests three regions of the country (central Illinois, northern Iowa/southern Minnesota, and along themore » Platte River in Nebraska) produce sufficient stover to support large biorefineries with one million Mg per year feedstock demands and that if farmers converted to universal no-till production of corn, then over 100 million Mg of stover could be collected annually without causing erosion to exceed the tolerable soil loss.« less

Authors:
 [1];  [2];  [1];  [3];  [4]
  1. ORNL
  2. Kansas State University
  3. National Renewable Energy Laboratory (NREL)
  4. subcontractor
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
931333
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Agronomy Journal; Journal Volume: 99; Journal Issue: 1
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; AGRICULTURAL WASTES; CARBON; CROPS; FERTILIZERS; MAIZE; MOISTURE; NUTRIENTS; PRODUCTIVITY; REMOVAL; RESIDUES; RIVERS; ROTATION; SOILS; Bioenergy; feedstocks; corn; corn stover; erosion; bioenergy feedstock

Citation Formats

Graham, Robin Lambert, Nelson, R, Perlack, Robert D, Sheehan, J., and Wright, Lynn L. Current and potential U.S. Corn Stover Supplies. United States: N. p., 2007. Web. doi:10.2134/agronj2005.0222.
Graham, Robin Lambert, Nelson, R, Perlack, Robert D, Sheehan, J., & Wright, Lynn L. Current and potential U.S. Corn Stover Supplies. United States. doi:10.2134/agronj2005.0222.
Graham, Robin Lambert, Nelson, R, Perlack, Robert D, Sheehan, J., and Wright, Lynn L. Mon . "Current and potential U.S. Corn Stover Supplies". United States. doi:10.2134/agronj2005.0222.
@article{osti_931333,
title = {Current and potential U.S. Corn Stover Supplies},
author = {Graham, Robin Lambert and Nelson, R and Perlack, Robert D and Sheehan, J. and Wright, Lynn L},
abstractNote = {Agricultural residues such as corn (Zea mays L.) stover are a potential feedstock for bioenergy and bio-based products that could reduceU.S. dependence on foreign oil. Collection of such residues must take into account concerns that residue removal could increase erosion, reduce crop productivity, and deplete soil carbon and nutrients. This article estimates where and how much corn stover can be collected sustainably in the USA using existing commercial equipment and estimates costs of that collection. Erosion constraints to collection were considered explicitly, and crop productivity and soil nutrient constraints were considered implicitly, by recognizing the value of residues for maintaining soil moisture and including the cost of fertilizer to replace nutrients removed. Possible soil carbon loss was not considered in the analysis. With an annual production of 196 million Mg of corn grain (about9.2 billion bushels), the USA produces 196 million Mg of stover. Under current rotation and tillage practices, about 30% of this stover could be collected for less than $33 per Mg, taking into consideration erosion and soil moisture concerns and nutrient replacement costs. Wind erosion is a major constraint to stover collection. Analysis suggests three regions of the country (central Illinois, northern Iowa/southern Minnesota, and along the Platte River in Nebraska) produce sufficient stover to support large biorefineries with one million Mg per year feedstock demands and that if farmers converted to universal no-till production of corn, then over 100 million Mg of stover could be collected annually without causing erosion to exceed the tolerable soil loss.},
doi = {10.2134/agronj2005.0222},
journal = {Agronomy Journal},
number = 1,
volume = 99,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}
  • We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithmsmore » for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.« less
  • Corn stover is a primary biofuel feedstock and its expanded use could help reduce reliance on fossil fuels and net CO2 emissions. Excessive stover removal may, however, negatively impact near-surface soil properties within a short period after removal. We assessed changes in soil crust strength, bulk density, and water content over a 1-yr period following a systematic removal or addition of stover from three no-till soils under corn in Ohio.
  • Corn (Zea mays L.) stover removal for biofuel production and other uses may alter soil hydraulic properties, but site-specific information needed to determine the threshold levels of removal for the U.S. Corn Belt region is limited. We quantified impacts of systematic removal of corn stover on soil hydraulic parameters after one year of stover management under no-till (NT) systems in three soils in Ohio including Rayne silt loam (fine-loamy, mixed, mesic Typic Hapludult) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. Interrelationships amongmore » soil properties and saturated hydraulic conductivity (Ksat) predictions were also studied. Earthworm middens, Ksat, bulk density (ρb), soil-water retention (SWR), pore-size distribution, and air permeability (ka) were determined for six stover treatments including 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200) % of corn stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal reduced the number of middens, Ksat, SWR, and ka at all sites (P<0.01). Complete stover removal reduced earthworm middens by 20-fold across sites, decreased geometric mean Ksat from 6.3 to 0.1 mm h-1 at Coshocton, 3.2 to 0.3 mm h-1 at Hoytville, and 5.8 to 0.6 mm h-1 at Charleston, and increased ρb in the 0- to 10-cm depth by about 15% relative to double stover plots. The SWR for T100 was 1.3 times higher than that for T0 at 0 to -6 kPa. The log ka for T200, T100, and T75 significantly exceeded that under T50, T25, and T0 at Coshocton and Charleston. Measured parameters were strongly correlated, and ka was a potential Ksat predictor. Stover harvesting at rates above 1.25 Mg ha-1 affects soil hydraulic properties and earthworm activity, but further monitoring is needed to ascertain the threshold levels of stover removal.Corn (Zea mays L.) stover removal for biofuel production and other uses may alter soil hydraulic properties, but site-specific information needed to determine the threshold levels of removal for the U.S. Corn Belt region is limited. We quantified impacts of systematic removal of corn stover on soil hydraulic parameters after one year of stover management under no-till (NT) systems in three soils in Ohio including Rayne silt loam (fine-loamy, mixed, mesic Typic Hapludult) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. Interrelationships among soil properties and saturated hydraulic conductivity (Ksat) predictions were also studied. Earthworm middens, Ksat, bulk density (ρb), soil-water retention (SWR), pore-size distribution, and air permeability (ka) were determined for six stover treatments including 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200) % of corn stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal reduced the number of middens, Ksat, SWR, and ka at all sites (P<0.01). Complete stover removal reduced earthworm middens by 20-fold across sites, decreased geometric mean Ksat from 6.3 to 0.1 mm h-1 at Coshocton, 3.2 to 0.3 mm h-1 at Hoytville, and 5.8 to 0.6 mm h-1 at Charleston, and increased ρb in the 0- to 10-cm depth by about 15% relative to double stover plots. The SWR for T100 was 1.3 times higher than that for T0 at 0 to -6 kPa. The log ka for T200, T100, and T75 significantly exceeded that under T50, T25, and T0 at Coshocton and Charleston. Measured parameters were strongly correlated, and ka was a potential Ksat predictor. Stover harvesting at rates above 1.25 Mg ha-1 affects soil hydraulic properties and earthworm activity, but further monitoring is needed to ascertain the threshold levels of stover removal.« less