ProRata: A quantitative proteomics program for accurate protein abundance ratio estimation with confidence interval evaluation
- ORNL
A profile likelihood algorithm is proposed for quantitative shotgun proteomics to infer the abundance ratios of proteins from the abundance ratios of isotopically labeled peptides derived from proteolysis. Previously, we have shown that the estimation variability and bias of peptide abundance ratios can be predicted from their profile signal-to-noise ratios. Given multiple quantified peptides for a protein, the profile likelihood algorithm probabilistically weighs the peptide abundance ratios by their inferred estimation variability, accounts for their expected estimation bias, and suppresses contribution from outliers. This algorithm yields maximum likelihood point estimation and profile likelihood confidence interval estimation of protein abundance ratios. This point estimator is more accurate than an estimator based on the average of peptide abundance ratios. The confidence interval estimation provides an "error bar" for each protein abundance ratio that reflects its estimation precision and statistical uncertainty. The accuracy of the point estimation and the precision and confidence level of the interval estimation were benchmarked with standard mixtures of isotopically labeled proteomes. The profile likelihood algorithm was integrated into a quantitative proteomics program, called ProRata, freely available at www.MSProRata.org.
- Research Organization:
- Oak Ridge National Laboratory (ORNL)
- Sponsoring Organization:
- ORNL LDRD Director's R&D; SC USDOE - Office of Science (SC)
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 930742
- Journal Information:
- Analytical Chemistry, Journal Name: Analytical Chemistry Journal Issue: 20 Vol. 78; ISSN ANCHAM; ISSN 0003-2700
- Country of Publication:
- United States
- Language:
- English
Similar Records
Robust Estimation of Peptide Abundance Ratios and Rigorous Scoring of Their Variability and Bias in Quantitative Shotgun Proteomics
Large-Scale Multiplexed Quantitative Discovery Proteomics Enabled by the Use of an O-18-Labeled “Universal” Reference Sample
Journal Article
·
Sat Dec 31 23:00:00 EST 2005
· Analytical Chemistry
·
OSTI ID:1003641
Large-Scale Multiplexed Quantitative Discovery Proteomics Enabled by the Use of an O-18-Labeled “Universal” Reference Sample
Journal Article
·
Wed Dec 31 23:00:00 EST 2008
· Journal of Proteome Research, 8(1):290-299
·
OSTI ID:949081