skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In Situ Time-Resolved Characterization of Novel Cu-MoO2 Catalysts During the Water-Gas Shift Reaction

Abstract

A novel and active Cu-MoO{sub 2} catalyst was synthesized by partial reduction of a precursor CuMoO{sub 4} mixed-metal oxide with CO or H{sub 2} at 200-250 C. The phase transformations of Cu-MoO{sub 2} during H{sub 2} reduction and the water-gas shift reaction could be followed by In situ time resolved XRD techniques. During the reduction process the diffraction pattern of the CuMoO{sub 4} collapsed and the copper metal lines were observed on an amorphous material background that was assigned to molybdenum oxides. During the first pass of water-gas shift (WGS) reaction, diffraction lines for Cu{sub 6}Mo{sub 5}O{sub 18} and MoO{sub 2} appeared around 350 C and Cu{sub 6}Mo{sub 5}O{sub 18} was further transformed to Cu/MoO{sub 2} at higher temperature. During subsequent passes, significant WGS catalytic activity was observed with relatively stable plateaus in product formation around 350, 400 and 500 C. The interfacial interactions between Cu clusters and MoO{sub 2} increased the water-gas shift catalytic activities at 350 and 400 C.

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL) National Synchrotron Light Source
Sponsoring Org.:
Doe - Office Of Science
OSTI Identifier:
930641
Report Number(s):
BNL-81052-2008-JA
Journal ID: ISSN 1011-372X; CALEER; TRN: US200901%%9
DOE Contract Number:
DE-AC02-98CH10886
Resource Type:
Journal Article
Resource Relation:
Journal Name: Catalysis Letters; Journal Volume: 113; Journal Issue: 39449
Country of Publication:
United States
Language:
English
Subject:
08 HYDROGEN; 01 COAL, LIGNITE, AND PEAT; CATALYSTS; COPPER; MOLYBDENUM OXIDES; PHASE TRANSFORMATIONS; SYNTHESIS; WATER GAS PROCESSES; SHIFT PROCESSES; CATALYTIC EFFECTS; MONITORING; X-RAY DIFFRACTION; national synchrotron light source

Citation Formats

Wen ,W., Liu, J., White, M., Marinkovic, N., Hanson, J., and Rodriguez, J. In Situ Time-Resolved Characterization of Novel Cu-MoO2 Catalysts During the Water-Gas Shift Reaction. United States: N. p., 2007. Web. doi:10.1007/s10562-006-9003-7.
Wen ,W., Liu, J., White, M., Marinkovic, N., Hanson, J., & Rodriguez, J. In Situ Time-Resolved Characterization of Novel Cu-MoO2 Catalysts During the Water-Gas Shift Reaction. United States. doi:10.1007/s10562-006-9003-7.
Wen ,W., Liu, J., White, M., Marinkovic, N., Hanson, J., and Rodriguez, J. Mon . "In Situ Time-Resolved Characterization of Novel Cu-MoO2 Catalysts During the Water-Gas Shift Reaction". United States. doi:10.1007/s10562-006-9003-7.
@article{osti_930641,
title = {In Situ Time-Resolved Characterization of Novel Cu-MoO2 Catalysts During the Water-Gas Shift Reaction},
author = {Wen ,W. and Liu, J. and White, M. and Marinkovic, N. and Hanson, J. and Rodriguez, J.},
abstractNote = {A novel and active Cu-MoO{sub 2} catalyst was synthesized by partial reduction of a precursor CuMoO{sub 4} mixed-metal oxide with CO or H{sub 2} at 200-250 C. The phase transformations of Cu-MoO{sub 2} during H{sub 2} reduction and the water-gas shift reaction could be followed by In situ time resolved XRD techniques. During the reduction process the diffraction pattern of the CuMoO{sub 4} collapsed and the copper metal lines were observed on an amorphous material background that was assigned to molybdenum oxides. During the first pass of water-gas shift (WGS) reaction, diffraction lines for Cu{sub 6}Mo{sub 5}O{sub 18} and MoO{sub 2} appeared around 350 C and Cu{sub 6}Mo{sub 5}O{sub 18} was further transformed to Cu/MoO{sub 2} at higher temperature. During subsequent passes, significant WGS catalytic activity was observed with relatively stable plateaus in product formation around 350, 400 and 500 C. The interfacial interactions between Cu clusters and MoO{sub 2} increased the water-gas shift catalytic activities at 350 and 400 C.},
doi = {10.1007/s10562-006-9003-7},
journal = {Catalysis Letters},
number = 39449,
volume = 113,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}
  • Active catalysts for the water-gas shift (WGS, CO + H2O ? H2 + CO2) reaction were synthesized from nickel molybdates ({beta}-NiMoO4 and nH2O{center_dot}NiMoO4) as precursors, and their structural transformations were monitored using in situ time-resolved X-ray diffraction and X-ray absorption near-edge spectroscopy. In general, the nickel molybdates were not stable and underwent partial reduction in the presence of CO or CO/H2O mixtures at high temperatures. The interaction of {beta}-NiMoO4 with the WGS reactants at 500 C led to the formation of a mixture of Ni (24 nm particle size) and MoO2 (10 nm particle size). These Ni-MoO2 systems displayed goodmore » catalytic activity at 350, 400, and 500 C. At 350 and 400 C, catalytic tests revealed that the Ni-MoO2 system was much more active than isolated Ni (some activity) or isolated MoO2 (negligible activity). Thus, cooperative interactions between the admetal and oxide support were probably responsible for the high WGS activity of Ni-MoO2. In a second synthetic approach, the NiMoO4 hydrate was reduced to a mixture of metallic Ni, NiO, and amorphous molybdenum oxide by direct reaction with H2 gas at 350 C. In the first pass of the water-gas shift reaction, MoO2 appeared gradually at 500 C with a concurrent increase of the catalytic activity. For these catalysts, the particle size of Ni (4 nm) was much smaller than that of the MoO2 (13 nm). These systems were found to be much more active WGS catalysts than Cu-MoO2, which in turn is superior to commercial low-temperature Cu-ZnO catalysts.« less
  • Synchrotron-based in situ time-resolved x-ray diffraction and x-ray absorption spectroscopies were used to study the behavior of nanostructured {l_brace}Au+AuO{sub x}{r_brace}-CeO{sub 2} catalysts under the water-gas shift (WGS) reaction. At temperatures above 250 C, a complete AuO{sub x}{yields}Au transformation was observed with high catalytic activity. Photoemission results for the oxidation and reduction of Au nanoparticles supported on rough ceria films or a CeO{sub 2}(111) single crystal corroborate that cationic Au{sup {delta}} species cannot be the key sites responsible for the WGS activity at high temperatures. The rate determining steps for the WGS seem to occur at the gold-ceria interface, with themore » active sites involving small gold clusters (<2 nm) and O vacancies.« less
  • Time-resolved X-ray diffraction (XRD) has emerged as a powerful technique for studying the behavior of heterogeneous catalysts (metal oxides, sulfides, carbides, phosphides, zeolites, etc.) in-situ during reaction conditions. The technique can identify the active phase of a heterogeneous catalyst and how its structure changes after interacting with the reactants and products (80 K < T < 1200 K; P < 50 atm). In this article, we review a series of recent works that use in-situ time-resolved XRD for studying the water-gas shift reaction (WGS, CO + H2O ? H2 + CO2) over several mixed-metal oxides: CuMoO4, NiMoO4, Ce1-xCuxO2-d and CuFe2O4.more » Under reaction conditions the oxides undergo partial reduction. Neutral Cu0 (i.e. no Cu1+ or Cu2+ cations) and Ni0 are the active species in the catalysts, but interactions with the oxide support are necessary in order to obtain high catalytic activity. These studies illustrate the important role played by O vacancies in the mechanism for the WGS. In the case of Ce1-xCuxO2-d, Rietveld refinement shows expansions/contractions in the oxide lattice which track steps within the WGS process: CO(gas) + O(oxi) ? CO2(gas) + O(vac); H2O(gas) + O(vac) ? O(oxi) + H2(gas).« less
  • Hydrogen is a potential alternate energy source for satisfying many of our energy needs. In this work, we studied H2 production from the water-gas-shift (WGS) reaction over Ce1-x Cu x O2 catalysts, prepared with a novel microemulsion method, using two synchrotron-based techniques: time-resolved X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). The results are compared with those reported for conventional CuO x /CeO2 and AuO x /CeO2 catalysts obtained through impregnation of ceria. For the fresh Ce1-x Cu x O2 catalysts, the results of XAFS measurements at the Cu K-edge indicate that Cu is in an oxidation state highermore » than in CuO. Nevertheless, under WGS reaction conditions the Ce1-x Cu x O2 catalysts undergo reduction and the active phase contains very small particles of metallic Cu and CeO2-x . Time-resolved XRD and XAFS results also indicate that Cud+ and Aud+ species present in fresh CuO x /CeO2 and AuO x /CeO2 catalysts do not survive above 200 C under the WGS conditions. In all these systems, the ceria lattice displayed a significant increase after exposure to CO and a decrease in H2O, indicating that CO reduced ceria while H2O oxidized it. Our data suggest that H2O dissociation occurred on the Ovacancy sites or the Cu-Ovacancy and Au-Ovacancy interfaces. The rate of H2 generation by a Ce0.95Cu0.05O2 catalyst was comparable to that of a 5 wt% CuO x /CeO2 catalyst and much bigger than those of pure ceria or CuO.« less