Combined Sulfur K-edge XANES Spectroscopy and Stable Isotope Analysis of Fulvic Acids and Groundwater Sulfate Identify Sulfur Cycling in a Karstic Catchment Area
Chemical and isotope analyses on groundwater sulfate, atmospheric deposition sulfate and fulvic acids (FAs) associated sulfur were used to determine the S cycling in a karstic catchment area of the Franconian Alb, Southern Germany. Sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy provided information on the oxidation state and the mechanism of the incorporation of sulfur in FAs. During base flow {delta}{sup 34}S values of groundwater sulfate were slightly depleted to those of recent atmospheric sulfate deposition with mean amount-weighted {delta}{sup 34}S values of around + 3{per_thousand}. The {delta}{sup 18}O values of groundwater sulfate shifted to lower values compared to those of atmospheric deposition and indicated steadiness from base flow to peak flow. The reduced sulfur species (S{sub -1}/thiol; S{sub 0}/thiophene, disulfide, S{sub +2}2/sulfoxide) of soil FAs averaged around 49% of the total sulfur and {delta}{sup 34}S value in FAs was found to be 0.5{per_thousand}. The formation of polysulfides and thiols in FAs in concert with a decreasing isotope value of {delta}{sup 34}S in FAs with respect to those of atmospheric deposition sulfate suggests oxidation of H{sub 2}S, enriched in the {sup 32}S isotope, with organic material. The depletion of {delta}{sup 18}O-SO{sub 4}{sup 2-} by several per mil in groundwater sulfate with respect to those of atmospheric deposition is, therefore, consistent with the hypothesis that SO{sub 4}{sup 2-} has been cycled through the organic S pool as well as that groundwater sulfate is formed by oxidation of H{sub 2}S with organic matter in the mineral soil of the catchment area.
- Research Organization:
- BROOKHAVEN NATIONAL LABORATORY (BNL), NATIONAL SYNCHROTRON LIGHT SOURCE (NSLS)
- Sponsoring Organization:
- Doe - Office Of Science
- DOE Contract Number:
- AC02-98CH10886
- OSTI ID:
- 930335
- Report Number(s):
- BNL--81046-2008-JA
- Journal Information:
- Chemical Geology, Journal Name: Chemical Geology Vol. 238; ISSN CHGEAD; ISSN 0009-2541
- Country of Publication:
- United States
- Language:
- English
Similar Records
Sulfur isotope dynamics in two Central European watersheds affected by high atmospheric deposition of SO{sub x}
Organic sulfur fluxes and geomorphic control of sulfur isotope ratios in rivers