skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synergism Between Halide Binding and Proton Transport in a CLC-type Exchanger

Journal Article · · Journal of Molecular Biology

The Cl{sup -}/H{sup +} exchange-transporter CLC-ec1 mediates stoichiometric transmembrane exchange of two Cl{sup -} ions for one proton. A conserved tyrosine residue, Y445, coordinates one of the bound Cl{sup -} ions visible in the structure of this protein and is located near the intersection of the Cl{sup -} and H{sup +} pathways. Mutants of this tyrosine were scrutinized for effects on the coupled transport of Cl{sup -} and H{sup +} determined electrophysiologically and on protein structure determined crystallographically. Despite the strong conservation of Y445 in the CLC family, substitution of F or W at this position preserves wild-type transport behavior. Substitution by A, E, or H, however, produces uncoupled proteins with robust Cl{sup -} transport but greatly impaired movement of H{sup +}+. The obligatory 2 Cl{sup -}/1 H{sup +} stoichiometry is thus lost in these mutants. The structures of all the mutants are essentially identical to wild-type, but apparent anion occupancy in the Cl{sup -} binding region correlates with functional H{sup +} coupling. In particular, as determined by anomalous diffraction in crystals grown in Br{sup -}, an electrophysiologically competent Cl{sup -} analogue, the well-coupled transporters show strong Br{sup -} electron density at the 'inner' and 'central' Cl{sup -} binding sites. However, in the uncoupled mutants, Br{sup -} density is absent at the central site, while still present at the inner site. An additional mutant, Y445L, is intermediate in both functional and structural features. This mutant clearly exchanges H{sup +} for Cl{sup -}, but at a reduced H{sup +}-to-Cl{sup -} ratio; likewise, both the central and inner sites are occupied by Br{sup -}, but the central site shows lower Br{sup -} density than in wild-type (or in Y445F,W). The correlation between proton coupling and central-site occupancy argues that halide binding to the central transport site somehow facilitates movement of H{sup +}, a synergism that is not readily understood in terms of alternating-site antiport schemes.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
Sponsoring Organization:
Doe - Office Of Science
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
930095
Report Number(s):
BNL-80733-2008-JA; JMOBAK; TRN: US0806703
Journal Information:
Journal of Molecular Biology, Vol. 362, Issue 4; ISSN 0022-2836
Country of Publication:
United States
Language:
English