skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mutation of a Conserved Active Site Residue Converts Tyrosyl-DNA Phosphodiesterase l Into a DNA Topoisomerase l-Dependent Poison

Journal Article · · Journal of Molecular Biology

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) catalyzes the resolution of 3' and 5' phospho-DNA adducts. A defective mutant, associated with the recessive neurodegenerative disease SCAN1, accumulates Tdp1-DNA complexes in vitro. To assess the conservation of enzyme architecture, a 2.0 {angstrom} crystal structure of yeast Tdp1 was determined that is very similar to human Tdp1. Poorly conserved regions of primary structure are peripheral to an essentially identical catalytic core. Enzyme mechanism was also conserved, because the yeast SCAN1 mutant (H{sub 432}R) enhanced cell sensitivity to the DNA topoisomerase I (Top1) poison camptothecin. A more severe Top1-dependent lethality of Tdp1H{sub 432}N was drug-independent, coinciding with increased covalent Top1-DNA and Tdp1-DNA complex formation in vivo. However, both H432 mutants were recessive to wild-type Tdp1. Thus, yeast H{sub 432} acts in the general acid/base catalytic mechanism of Tdp1 to resolve 3' phosphotyrosyl and 3' phosphoamide linkages. However, the distinct pattern of mutant Tdp1 activity evident in yeast cells, suggests a more severe defect in Tdp1H{sub 432}N-catalyzed resolution of 3' phospho-adducts.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
Sponsoring Organization:
Doe - Office Of Science
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
929987
Report Number(s):
BNL-80596-2008-JA; JMOBAK; TRN: US200822%%1143
Journal Information:
Journal of Molecular Biology, Vol. 372; ISSN 0022-2836
Country of Publication:
United States
Language:
English