skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the production behavior of enhanced geothermal systems with CO2as working fluid

Abstract

Numerical simulation is used to evaluate mass flow and heatextraction rates from enhanced geothermal injection-production systemsthat are operated using either CO2 or water as heat transmission fluid.For a model system patterned after the European hot dry rock experimentat Soultz, we find significantly greater heat extraction rates for CO2 ascompared to water. The strong dependence of CO2 mobility (=density/viscosity) upon temperature and pressure may lead to unusualproduction behavior, where heat extraction rates can actually increasefor a time, even as the reservoir is subject to thermal depletion. Wepresent the first-ever three-dimensional simulations of CO2injection-production systems. These show strong effects of gravity onmass flow and heat extraction, due to the large contrast of CO2 densitybetween cold injection and hot production conditions. The tendency forpreferential flow of cold, dense CO2 along the reservoir bottom can leadto premature thermal breakthrough. The problem can be avoided byproducing from only a limited depth interval at the top of thereservoir.

Authors:
Publication Date:
Research Org.:
Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA (US)
Sponsoring Org.:
USDOE
OSTI Identifier:
929764
Report Number(s):
LBNL-63355
Journal ID: ISSN 0196-8904; ECMADL; R&D Project: CSR012; BnR: 830404000; TRN: US200812%%655
DOE Contract Number:
DE-AC02-05CH11231
Resource Type:
Journal Article
Resource Relation:
Journal Name: Energy Conversion and Management; Journal Volume: 0; Journal Issue: 0; Related Information: Journal Publication Date: 0
Country of Publication:
United States
Language:
English
Subject:
54; GEOTHERMAL SYSTEMS; HEAT EXTRACTION; HEAT TRANSFER; PRODUCTION; SIMULATION; WATER; WORKING FLUIDS; enhanced geothermal systems (EGS) heat transmission thermalbreakthrough CO2 storage numerical simulation

Citation Formats

Pruess, K. On the production behavior of enhanced geothermal systems with CO2as working fluid. United States: N. p., 2007. Web.
Pruess, K. On the production behavior of enhanced geothermal systems with CO2as working fluid. United States.
Pruess, K. Thu . "On the production behavior of enhanced geothermal systems with CO2as working fluid". United States. doi:. https://www.osti.gov/servlets/purl/929764.
@article{osti_929764,
title = {On the production behavior of enhanced geothermal systems with CO2as working fluid},
author = {Pruess, K.},
abstractNote = {Numerical simulation is used to evaluate mass flow and heatextraction rates from enhanced geothermal injection-production systemsthat are operated using either CO2 or water as heat transmission fluid.For a model system patterned after the European hot dry rock experimentat Soultz, we find significantly greater heat extraction rates for CO2 ascompared to water. The strong dependence of CO2 mobility (=density/viscosity) upon temperature and pressure may lead to unusualproduction behavior, where heat extraction rates can actually increasefor a time, even as the reservoir is subject to thermal depletion. Wepresent the first-ever three-dimensional simulations of CO2injection-production systems. These show strong effects of gravity onmass flow and heat extraction, due to the large contrast of CO2 densitybetween cold injection and hot production conditions. The tendency forpreferential flow of cold, dense CO2 along the reservoir bottom can leadto premature thermal breakthrough. The problem can be avoided byproducing from only a limited depth interval at the top of thereservoir.},
doi = {},
journal = {Energy Conversion and Management},
number = 0,
volume = 0,
place = {United States},
year = {Thu May 31 00:00:00 EDT 2007},
month = {Thu May 31 00:00:00 EDT 2007}
}
  • Responding to the need to reduce atmospheric emissions of carbon dioxide, Donald Brown (2000) proposed a novel enhanced geothermal systems (EGS) concept that would use CO{sub 2} instead of water as heat transmission fluid, and would achieve geologic sequestration of CO{sub 2} as an ancillary benefit. Following up on his suggestion, we have evaluated thermophysical properties and performed numerical simulations to explore the fluid dynamics and heat transfer issues in an engineered geothermal reservoir that would be operated with CO{sub 2}. We find that CO{sub 2} is superior to water in its ability to mine heat from hot fractured rock.more » CO{sub 2} also has certain advantages with respect to wellbore hydraulics, where larger compressibility and expansivity as compared to water would increase buoyancy forces and would reduce the parasitic power consumption of the fluid circulation system. While the thermal and hydraulic aspects of a CO{sub 2}-EGS system look promising, major uncertainties remain with regard to chemical interactions between fluids and rocks. An EGS system running on CO{sub 2} has sufficiently attractive features to warrant further investigation.« less
  • Recent studies suggest that using supercritical CO 2 (scCO 2 ) instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS) may improve energy extraction. While CO 2 -fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO 2 as a working fluid (“CO 2 -EGS”) compared to those for water as a working fluid (H 2 O-EGS) are needed. The primary objectives of this study are (1) constraining geochemical processes associated with CO 2 -fluid-rock interactions undermore » the high pressures and temperatures of a typical CO 2 -EGS site and (2) comparing geochemical impacts of CO 2 -EGS to geochemical impacts of H 2 O-EGS. The St. John’s Dome CO 2 -EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO 2 -EGS were larger compared to H 2 O-EGS, suggesting that using scCO 2 as a working fluid may enhance EGS heat extraction. More aqueous CO 2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO 2 as a working fluid. It indicates that geochemical processes of scCO 2 -rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.« less
  • Numerical simulation is used to evaluate mass flow and heatextraction rates from enhanced geothermal injection-production systemsthat are operated using either CO2 or water as heat transmission fluid.For a model system patterned after the European hot dry rock experimentat Soultz, we find significantly greater heat extraction rates for CO2 ascompared to water. The strong dependence of CO2 mobility (=density/viscosity) upon temperature and pressure may lead to unusualproduction behavior, where heat extraction rates can actually increasefor a time, even as the reservoir is subject to thermaldepletion.