Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Reservoir permeability from seismic attribute analysis

Journal Article · · The Leading Edge
OSTI ID:929417

In case of porous fluid-saturated medium the Biot's poroelasticity theory predicts a movement of the pore fluid relative to the skeleton on seismic wave propagation through the medium. This phenomenon opens an opportunity for investigation of the flow properties of the hydrocarbon-saturated reservoirs. It is well known that relative fluid movement becomes negligible at seismic frequencies if porous material is homogeneous and well cemented. In this case the theory predicts an underestimated seismic wave velocity dispersion and attenuation. Based on Biot's theory, Helle et al. (2003) have numerically demonstrated the substantial effects on both velocity and attenuation by heterogeneous permeability and saturation in the rocks. Besides fluid flow effect, the effects of scattering (Gurevich, et al., 1997) play very important role in case of finely layered porous rocks and heterogeneous fluid saturation. We have used both fluid flow and scattering effects to derive a frequency-dependent seismic attribute which is proportional to fluid mobility and applied it for analysis of reservoir permeability.

Research Organization:
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US)
Sponsoring Organization:
Earth Sciences Division
DOE Contract Number:
AC02-05CH11231
OSTI ID:
929417
Report Number(s):
LBNL-305E
Journal Information:
The Leading Edge, Journal Name: The Leading Edge Vol. March
Country of Publication:
United States
Language:
English