skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Recycling of cleach plant filtrates by electrodialysis removal of inorganic non-process elements.

Technical Report ·
DOI:https://doi.org/10.2172/926132· OSTI ID:926132

Water use in the pulp and paper industry is very significant, and the U.S. pulp and paper industries as well as other processing industries are actively pursuing water conservation and pollution prevention by in-process recycling of water. Bleach plant effluent is a large portion of the water discharged from a typical bleached kraft pulp mill. The recycling of bleach plant effluents to the kraft recovery cycle is widely regarded as an approach to low effluent bleached kraft pulp production. The focus of this work has been on developing an electrodialysis process for recycling the acidic bleach plant effluent of bleached Kraft pulp mills. Electrodialysis is uniquely suited as a selective kidney to remove non-process elements (NPEs) from bleach plant effluent before they reach the chemical recovery cycle. Using electrodialysis for selective NPE removal can prevent the problems caused by accumulation of inorganic NPEs in the pulping cycle and recovery boiler. In this work, acidic bleach plant filtrates from three mills using different bleaching sequences based on chlorine dioxide were characterized. The analyses showed no fundamental differences in the inorganic NPE composition or other characteristics among these filtrates. The majority of total dissolved solids in the effluents were found to be inorganic NPEs. Chloride and nitrate were present at significant levels in all effluent samples. Sodium was the predominant metal ion, while calcium and magnesium were also present at considerable levels. The feasibility of using electrodialysis to selectively remove inorganic NPEs from the acidic bleach effluent was successfully demonstrated in laboratory experiments with effluents from all these three mills. Although there were some variations in these effluents, chloride and potentially harmful cations, such as potassium, calcium, and magnesium, were removed efficiently from the bleach effluents into a small-volume, concentrated purge stream. This effective removal of inorganic NPEs can enable the mills to recycle bleach effluents to reduce water consumption. The electrodialysis process also effectively retained up to 98% of the organics and can reduce the organic discharge in the mill wastewater. By using suitable commercially available electrodialysis membranes, there were no indications of rapid or irreversible membrane fouling or scale formation, even in extended laboratory scale operations up to 100 hours. Results of laboratory experiments also showed that commercially available membranes properly selected for this process would have good stability to withstand the potentially oxidative conditions of the filtrate. A pilot-scale field demonstration was also conducted at a southern mill, using the D0 filtrate from the bleach plant. During the field demonstration we found serious membrane 2 stack clogging problems, which apparently were caused by fine fibers that escaped through the 5-micron pre-filters, although such a pre-filtration method had been satisfactory in the laboratory tests. Additional R&D is recommended to address this pre-filtration or clogging issue with systems approaches integrating pre-filtration, other separation methods, and stack design. After the pre-filtration/clogging issue is overcome, laboratory development and pilot demonstration are recommended to optimize the process parameters and to evaluate the long-term process parameters. The key technical issues here include membrane lives, control and mitigation of fouling and scaling, and cleaning-in-place protocols. From the data collected in this work, a preliminary process design and economic evaluations were performed for a model mill with 1,000-ton/day pulp production that uses a bleaching sequence based on chlorine dioxide. Assuming 3 m{sup 3} acidic effluents to be treated per ton of pulp produced, the electrodialysis process would require a membrane area of about 361 m{sup 2} for this model mill. The energy consumption of the electrodialytic stack for separation is estimated to be about $160/day, and the estimated capital cost of the electrodialysis system is $750,000 to $1,000,000 for this case. These economics seem attractive, although the overall costs will include additional operating and capital costs, which cannot be estimated at this time. It is recommended that a more detailed process design and economic evaluations be performed, when additional data are available.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
EE
DOE Contract Number:
DE-AC02-06CH11357
OSTI ID:
926132
Report Number(s):
ANL/ES/RP-106995; TRN: US200807%%602
Country of Publication:
United States
Language:
ENGLISH