On the Mechanism of Hydrophobic Association of Nanoscopic Solutes
The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The hydration behavior of two planar nanoscopic hydrophobic solutes in liquid water at normal temperature and pressure is investigated by calculating the potential of mean force between them at constant pressure as a function of the solute-solvent interaction potential. The importance of the effect of weak attractive interactions between the solute atoms and the solvent on the hydration behavior is clearly demonstrated. We focus on the underlying mechanism behind the contrasting results obtained in various recent experimental and computational studies on water near hydrophobic solutes. The length scale where crossover from a solvent separated state to the contact pair state occurs is shown to depend on the solute sizes as well as on details of the solute-solvent interaction. We find the mechanism for attractive mean forces between the plates is very different depending on the nature of the solute-solvent interaction which has implications for the mechanism of the hydrophobic effect for biomolecules.
- Research Organization:
- Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC05-76RL01830
- OSTI ID:
- 921859
- Journal Information:
- Journal of the American Chemical Society, 127(10):3556-3567, Journal Name: Journal of the American Chemical Society, 127(10):3556-3567
- Country of Publication:
- United States
- Language:
- English
Similar Records
Local Density Profiles are Coupled to Solute Size and Attractive Potential for Nanoscopic Hydrophobic Solutes.
Enthalpy-Entropy Contributions to the Potential of Mean Force of Nanoscopic Hydrophobic Solutes