Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Structure and Reaction of Oxametallacycles Derived from Styrene Oxide on Ag(110).

Journal Article · · Surface Science, 601(16):3372-3382

The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Styrene oxide forms a strongly bound oxametallacycle intermediate via activated adsorption on the Ag(110) surface. The oxametallacycle species derived from styrene oxide on Ag(110) fits well with the family of oxametallacycles identified previously in studies of nonallylic epoxides with unsaturated substituent groups on silver. Temperature-programmed reaction experiments demonstrate that styrene oxide ring opens at the substituted carbon, and Density Functional Theory calculations indicate that the phenyl ring of the resulting oxametallacycle is oriented nearly parallel to the Ag(110) surface. Interaction of the phenyl group with the silver surface stabilizes this intermediate relative to that derived from the mono-olefin epoxide, ethylene oxide. During temperature-programmed reaction, the oxametallacycle undergoes ring-closure to reform styrene oxide and isomerization to phenylacetaldehyde at 505 K on Ag(11 0). Styrene oxide-derived oxametallacycles exhibit similar ring-closure behavior on the Ag(111) surface.

Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
921392
Journal Information:
Surface Science, 601(16):3372-3382, Journal Name: Surface Science, 601(16):3372-3382 Journal Issue: 16 Vol. 601; ISSN SUSCAS; ISSN 0039-6028
Country of Publication:
United States
Language:
English