skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Neutron-Absorbing Coatings for Safe Storage of Fissile Materials with Enhanced Shielding & Criticality Safety

Conference ·
OSTI ID:920842

Neutron-absorbing Fe-based amorphous-metal coatings have been developed that are more corrosion resistant than other criticality-control materials, including Al-B{sub 4}C composites, borated stainless steels, and Ni-Cr-Mo-Gd alloys. The presence of relatively high concentration of boron in these coatings not only enhances its neutron-absorption capability, but also enables these coatings to exist in the amorphous state. Exceptional corrosion resistance has been achieved with these Fe-based amorphous-metal alloys through additions of chromium, molybdenum, and tungsten. The addition of rare earth elements such as yttrium has lowered the critical cooling rate of these materials, thereby rendering them more easily processed. Containers used for the storage of nuclear materials, and protected from corrosion through the application of amorphous metal coatings, would have greatly enhanced service lives, and would therefore provide greater long-term safety. Amorphous alloy powders have been successfully produced in multi-ton quantities with gas atomization, and applied to several half-scale spent fuel storage containers and criticality control structures with the high-velocity oxy-fuel (HVOF) thermal spray process. Salt fog testing and neutron radiography of these prototypes indicates that such an approach is viable for the production of large-scale industrial-scale facilities and containers. The use of these durable neutron-absorbing materials to coat stainless steel containers and storage racks, as well as vaults, hot-cell facilities and glove boxes could substantially reduce the risk of criticality in the event of an accident. These materials are particularly attractive for shielding applications since they are fire proof. Additionally, layers of other cold and thermal sprayed materials that include carbon and/or carbides can be used in conjunction with the high-boron amorphous metal coatings for the purpose of moderation. For example, various carbides, including boron, tungsten, and chromium carbide, as well as graphite particles can be co-deposited with a metallic binder phase with either thermal spray or cold spray technology. These moderator layers would also be fire resistant. By coating the vessels and piping used for spent fuel reprocessing, including slab and pencil tanks, enhanced criticality safety and substantially better corrosion resistance can be achieved simultaneously. Since these alloys are Fe-based, any substitution of these for high-performance Ni-based alloys is expected to result in a cost savings. Ultimately, the cost of these materials should comparable to that of stainless steels.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
920842
Report Number(s):
UCRL-CONF-232503; TRN: US0802031
Resource Relation:
Conference: Presented at: Materials Science & Technology 2007 Conference and Exhibition, Detroit, MI, United States, Sep 16 - Sep 20, 2007
Country of Publication:
United States
Language:
English