skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: FEASIBILITY EVALUATION AND RETROFIT PLAN FOR COLD CRUCIBLE INDUCTION MELTER DEPLOYMENT IN THE DEFENSE WASTE PROCESSING FACILITY AT SAVANNAH RIVER SITE - 8118

Abstract

Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. This paper describes the CCIM technology and identifies technical challenges that must be addressed in order to implement CCIMs in the DWPF. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 KHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generatedmore » by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 C to 200 C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined Joule heated melters. It can be operated at melt temperatures in excess of 2000 C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured through a bottom drain, typically through a water-cooled slide valve that starts and stops the pour stream. To promote uniform temperature distribution and increase heat transfer to the slurry fed High Level Waste (HLW) sludge, the CCIM may be equipped with bubblers and/or water cooled mechanical agitators. The DWPF could benefit from use of CCIM technology, especially in light of our latest projections of waste volume to be vitrified. Increased waste loading and increased throughput could result in substantial life cycle cost reduction. In order to significantly surpass the waste throughput capability of the currently installed Joule Heated Melter, it may be necessary to install two 950 mm CCIMs in the DWPF Melt Cell. A cursory evaluation of system design requirements and modifications to the facility that may be required to support installation and operation of two 950 mm CCIMs was performed. Based on this evaluation, it appears technically feasible to position two CCIMs in the Melt Cell of the DWPF within the existing footprint of the current melter. Interfaces with support systems and controls including Melter Feed, Power, Melter Cooling Water, Melter Off-gas, and Canister Operations must be designed to support dual CCIM operations.« less

Authors:
; ;
Publication Date:
Research Org.:
SRS
Sponsoring Org.:
USDOE
OSTI Identifier:
920665
Report Number(s):
WSRC-STI-2007-00669
TRN: US200818%%119
DOE Contract Number:  
DE-AC09-96SR18500
Resource Type:
Conference
Resource Relation:
Conference: Waste Management 2008
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ALUMINIUM; CONTAINERS; CRUCIBLES; EDDY CURRENTS; EVALUATION; GLASS; HEAT TRANSFER; INDUCTION; LIFE-CYCLE COST; MAGNETIC FIELDS; PROCESSING; STAINLESS STEELS; TEMPERATURE DISTRIBUTION; WASTE MANAGEMENT; WASTE PROCESSING

Citation Formats

Barnes, A, Dan Iverson, D, and Brannen Adkins, B. FEASIBILITY EVALUATION AND RETROFIT PLAN FOR COLD CRUCIBLE INDUCTION MELTER DEPLOYMENT IN THE DEFENSE WASTE PROCESSING FACILITY AT SAVANNAH RIVER SITE - 8118. United States: N. p., 2007. Web.
Barnes, A, Dan Iverson, D, & Brannen Adkins, B. FEASIBILITY EVALUATION AND RETROFIT PLAN FOR COLD CRUCIBLE INDUCTION MELTER DEPLOYMENT IN THE DEFENSE WASTE PROCESSING FACILITY AT SAVANNAH RIVER SITE - 8118. United States.
Barnes, A, Dan Iverson, D, and Brannen Adkins, B. Thu . "FEASIBILITY EVALUATION AND RETROFIT PLAN FOR COLD CRUCIBLE INDUCTION MELTER DEPLOYMENT IN THE DEFENSE WASTE PROCESSING FACILITY AT SAVANNAH RIVER SITE - 8118". United States. https://www.osti.gov/servlets/purl/920665.
@article{osti_920665,
title = {FEASIBILITY EVALUATION AND RETROFIT PLAN FOR COLD CRUCIBLE INDUCTION MELTER DEPLOYMENT IN THE DEFENSE WASTE PROCESSING FACILITY AT SAVANNAH RIVER SITE - 8118},
author = {Barnes, A and Dan Iverson, D and Brannen Adkins, B},
abstractNote = {Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. This paper describes the CCIM technology and identifies technical challenges that must be addressed in order to implement CCIMs in the DWPF. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 KHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generated by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 C to 200 C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined Joule heated melters. It can be operated at melt temperatures in excess of 2000 C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured through a bottom drain, typically through a water-cooled slide valve that starts and stops the pour stream. To promote uniform temperature distribution and increase heat transfer to the slurry fed High Level Waste (HLW) sludge, the CCIM may be equipped with bubblers and/or water cooled mechanical agitators. The DWPF could benefit from use of CCIM technology, especially in light of our latest projections of waste volume to be vitrified. Increased waste loading and increased throughput could result in substantial life cycle cost reduction. In order to significantly surpass the waste throughput capability of the currently installed Joule Heated Melter, it may be necessary to install two 950 mm CCIMs in the DWPF Melt Cell. A cursory evaluation of system design requirements and modifications to the facility that may be required to support installation and operation of two 950 mm CCIMs was performed. Based on this evaluation, it appears technically feasible to position two CCIMs in the Melt Cell of the DWPF within the existing footprint of the current melter. Interfaces with support systems and controls including Melter Feed, Power, Melter Cooling Water, Melter Off-gas, and Canister Operations must be designed to support dual CCIM operations.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2007},
month = {11}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: