skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fiber optic thermal/fast neutron and gamma ray scintillation detector

Abstract

A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

Inventors:
 [1];  [2]
  1. (Knoxville, TN)
  2. (Oak Ridge, TN)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN
Sponsoring Org.:
USDOE
OSTI Identifier:
918906
Patent Number(s):
7,288,771
Application Number:
11/549,269
Assignee:
UT-Battelle LLC (Oak Ridge, TN) ORO
DOE Contract Number:
AC05-00OR22725
Resource Type:
Patent
Country of Publication:
United States
Language:
English

Citation Formats

Neal, John S., and Mihalczo, John T. Fiber optic thermal/fast neutron and gamma ray scintillation detector. United States: N. p., 2007. Web.
Neal, John S., & Mihalczo, John T. Fiber optic thermal/fast neutron and gamma ray scintillation detector. United States.
Neal, John S., and Mihalczo, John T. Tue . "Fiber optic thermal/fast neutron and gamma ray scintillation detector". United States. doi:. https://www.osti.gov/servlets/purl/918906.
@article{osti_918906,
title = {Fiber optic thermal/fast neutron and gamma ray scintillation detector},
author = {Neal, John S. and Mihalczo, John T},
abstractNote = {A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Oct 30 00:00:00 EDT 2007},
month = {Tue Oct 30 00:00:00 EDT 2007}
}

Patent:

Save / Share:
  • A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.
  • A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are producedmore » by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.« less
  • A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are producedmore » by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.« less
  • A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are producedmore » by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.« less
  • A combined thermal neutron detector and gamma-ray spectrometer system, including: a detection medium including a lithium chalcopyrite crystal operable for detecting thermal neutrons in a semiconductor mode and gamma-rays in a scintillator mode; and a photodetector coupled to the detection medium also operable for detecting the gamma rays. Optionally, the detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the detection medium comprises a compound formed by the process of: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providingmore » a single phase I-III compound; and adding a Group VI element to the single phase I-III compound and heating; wherein the Group I element includes lithium.« less