An Improved Linear Tetrahedral Element for Plasticity
A stabilized, nodally integrated linear tetrahedral is formulated and analyzed. It is well known that linear tetrahedral elements perform poorly in problems with plasticity, nearly incompressible materials, and acute bending. For a variety of reasons, linear tetrahedral elements are preferable to quadratic tetrahedral elements in most nonlinear problems. Whereas, mixed methods work well for linear hexahedral elements, they don't for linear tetrahedrals. On the other hand, automatic mesh generation is typically not feasible for building many 3D hexahedral meshes. A stabilized, nodally integrated linear tetrahedral is developed and shown to perform very well in problems with plasticity, nearly incompressible materials and acute bending. Furthermore, the formulation is analytically and numerically shown to be stable and optimally convergent. The element is demonstrated to perform well in several standard linear and nonlinear benchmarks.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 918409
- Report Number(s):
- UCRL-CONF-211697
- Country of Publication:
- United States
- Language:
- English
Similar Records
An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations
A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: A dynamic variational multiscale approach [A simple, stable, and accurate tetrahedral finite element for transient, nearly incompressible, linear and nonlinear elasticity: A dynamic variational multiscale approach]