skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SREF - a Simple Removable Epoxy Foam decomposition chemistry model.

Technical Report ·
DOI:https://doi.org/10.2172/918285· OSTI ID:918285

A Simple Removable Epoxy Foam (SREF) decomposition chemistry model has been developed to predict the decomposition behavior of an epoxy foam encapsulant exposed to high temperatures. The foam is composed of an epoxy polymer, blowing agent, and surfactant. The model is based on a simple four-step mass loss model using distributed Arrhenius reaction rates. A single reaction was used to describe desorption of the blowing agent and surfactant (BAS). Three of the reactions were used to describe degradation of the polymer. The coordination number of the polymeric lattice was determined from the chemical structure of the polymer; and a lattice statistics model was used to describe the evolution of polymer fragments. The model lattice was composed of sites connected by octamethylcylotetrasiloxane (OS) bridges, mixed product (MP) bridges, and bisphenol-A (BPA) bridges. The mixed products were treated as a single species, but are likely composed of phenols, cresols, and furan-type products. Eleven species are considered in the SREF model - (1) BAS, (2) OS, (3) MP, (4) BPA, (5) 2-mers, (6) 3-mers, (7) 4-mers, (8) nonvolatile carbon residue, (9) nonvolatile OS residue, (10) L-mers, and (11) XL-mers. The first seven of these species (VLE species) can either be in the condensed-phase or gas-phase as determined by a vapor-liquid equilibrium model based on the Rachford-Rice equation. The last four species always remain in the condensed-phase. The 2-mers, 3-mers, and 4-mers are polymer fragments that contain two, three, or four sites, respectively. The residue can contain C, H, N, O, and/or Si. The L-mer fraction consists of polymer fragments that contain at least five sites (5-mer) up to a user defined maximum mer size. The XL-mer fraction consists of polymer fragments greater than the user specified maximum mer size and can contain the infinite lattice if the bridge population is less than the critical bridge population. Model predictions are compared to 133-thermogravimetric analysis (TGA) experiments performed at 24 different conditions. The average RMS error between the model and the 133 experiments was 4.25%. The model was also used to predict the response of two other removable epoxy foams with different compositions as well as the pressure rise in a constant volume hot cell.

Research Organization:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
918285
Report Number(s):
SAND2003-4550; TRN: US200818%%193
Country of Publication:
United States
Language:
English

Similar Records

Modeling epoxy foams exposed to fire-like heat fluxes.
Journal Article · Fri Oct 01 00:00:00 EDT 2004 · Proposed for publication in Polymer Degradation and Stability. · OSTI ID:918285

Modeling epoxy foams exposed to fire-like heat fluxes.
Conference · Mon Nov 01 00:00:00 EST 2004 · OSTI ID:918285

Response of removable epoxy foam exposed to fire using an element death model.
Technical Report · Wed Sep 01 00:00:00 EDT 2004 · OSTI ID:918285