Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Recyclable transmission line concept for z-pinch driven inertial fusion energy.

Technical Report ·
DOI:https://doi.org/10.2172/918210· OSTI ID:918210
 [1]; ;  [2]; ; ;  [3]
  1. University of California, Davis, CA
  2. Ktech Corporation, Albuquerque, NM
  3. University of California, Berkeley, CA

Recyclable transmission lines (RTL)s are being studied as a means to repetitively drive z pinches to generate fusion energy. We have shown previously that the RTL mass can be quite modest. Minimizing the RTL mass reduces recycling costs and the impulse delivered to the first wall of a fusion chamber. Despite this reduction in mass, a few seconds will be needed to reload an RTL after each subsequent shot. This is in comparison to other inertial fusion approaches that expect to fire up to ten capsules per second. Thus a larger fusion yield is needed to compensate for the slower repetition rate in a z-pinch driven fusion reactor. We present preliminary designs of z-pinch driven fusion capsules that provide an adequate yield of 1-4 GJ. We also present numerical simulations of the effect of these fairly large fusion yields on the RTL and the first wall of the reactor chamber. These simulations were performed with and without a neutron absorbing blanket surrounding the fusion explosion. We find that the RTL will be fully vaporized out to a radius of about 3 meters assuming normal incidence. However, at large enough radius the RTL will remain in either the liquid or solid state and this portion of the RTL could fragment and become shrapnel. We show that a dynamic fragmentation theory can be used to estimate the size of these fragmented particles. We discuss how proper design of the RTL can allow this shrapnel to be directed away from the sensitive mechanical parts of the reactor chamber.

Research Organization:
Sandia National Laboratories
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
918210
Report Number(s):
SAND2003-4551
Country of Publication:
United States
Language:
English

Similar Records

Progress on Z-pinch inertial fusion energy.
Conference · Wed Sep 01 00:00:00 EDT 2004 · OSTI ID:945169

Progress in Z-pinch inertial fusion energy.
Conference · Sun Feb 28 23:00:00 EST 2010 · OSTI ID:990000

An Inertial-Fusion Z-Pinch Power Plant Concept
Journal Article · Thu Dec 14 23:00:00 EST 2000 · Nuclear Fusion · OSTI ID:771517