skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Combustion oscillation monitoring using flame ionization in a turbulent premixed combustor

Abstract

To achieve very low NOx emission levels, lean-premixed gas turbine combustors have been commercially implemented that operate near the fuel-lean flame extinction limit. Near the lean limit, however, flashback, lean blow off, and combustion dynamics have appeared as problems during operation. To help address these operational problems, a combustion control and diagnostics sensor (CCADS) for gas turbine combustors is being developed. CCADS uses the electrical properties of the flame to detect key events and monitor critical operating parameters within the combustor. Previous development efforts have shown the capability of CCADS to monitor flashback and equivalence ratio. Recent work has focused on detecting and measuring combustion instabilities. A highly instrumented atmospheric combustor has been used to measure the pressure oscillations in the combustor, the OH emission, and the flame ion field at the premix injector outlet and along the walls of the combustor. This instrumentation allows examination of the downstream extent of the combustion field using both the OH emission and the corresponding electron and ion distribution near the walls of the combustor. In most cases, the strongest pressure oscillation dominates the frequency behavior of the OH emission and the flame ion signals. Using this highly instrumented combustor, tests were runmore » over a matrix of equivalence ratios from 0.6 to 0.8, with an inlet reference velocity of 25 m/s 82 ft/ s . The acoustics of the fuel system for the combustor were tuned using an active-passive technique with an adjustable quarter-wave resonator. Although several statistics were investigated for correlation with the dynamic pressure in the combustor, the best correlation was found with the standard deviation of the guard current. The data show a monotonic relationship between the standard deviation of the guard current (the current through the flame at the premix injector outlet) and the standard deviation of the chamber pressure. Therefore, the relationship between the standard deviation of the guard current and the standard deviation of the pressure is the most promising for monitoring the dynamic pressure of the combustor using the flame ionization signal. This addition to the capabilities of CCADS would allow for dynamic pressure monitoring on commercial gas turbines without a pressure transducer.« less

Authors:
; ; ;
Publication Date:
Research Org.:
National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV
Sponsoring Org.:
USDOE - Office of Fossil Energy (FE)
OSTI Identifier:
917382
Report Number(s):
DOE/NETL-IR-2007-239
Journal ID: ISSN: 0742-4795; eISSN: 1528-8919; TRN: US200816%%372
DOE Contract Number:
None cited
Resource Type:
Journal Article
Resource Relation:
Journal Name: Transactions of the ASME: Journal of Engineering for Gas Turbines and Power; Journal Volume: 129; Journal Issue: 2
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; COMBUSTION KINETICS; COMBUSTION CONTROL; COMBUSTORS; FLAMES; GAS TURBINES; IONIZATION; MONITORING; NITROGEN OXIDES; AIR POLLUTION ABATEMENT; ON-LINE MEASUREMENT SYSTEMS

Citation Formats

Chorpening, B.T., Thornton, J.D., Huckaby, E.D., and Benson, K.J. Combustion oscillation monitoring using flame ionization in a turbulent premixed combustor. United States: N. p., 2007. Web. doi:10.1115/1.2431390.
Chorpening, B.T., Thornton, J.D., Huckaby, E.D., & Benson, K.J. Combustion oscillation monitoring using flame ionization in a turbulent premixed combustor. United States. doi:10.1115/1.2431390.
Chorpening, B.T., Thornton, J.D., Huckaby, E.D., and Benson, K.J. Sun . "Combustion oscillation monitoring using flame ionization in a turbulent premixed combustor". United States. doi:10.1115/1.2431390.
@article{osti_917382,
title = {Combustion oscillation monitoring using flame ionization in a turbulent premixed combustor},
author = {Chorpening, B.T. and Thornton, J.D. and Huckaby, E.D. and Benson, K.J.},
abstractNote = {To achieve very low NOx emission levels, lean-premixed gas turbine combustors have been commercially implemented that operate near the fuel-lean flame extinction limit. Near the lean limit, however, flashback, lean blow off, and combustion dynamics have appeared as problems during operation. To help address these operational problems, a combustion control and diagnostics sensor (CCADS) for gas turbine combustors is being developed. CCADS uses the electrical properties of the flame to detect key events and monitor critical operating parameters within the combustor. Previous development efforts have shown the capability of CCADS to monitor flashback and equivalence ratio. Recent work has focused on detecting and measuring combustion instabilities. A highly instrumented atmospheric combustor has been used to measure the pressure oscillations in the combustor, the OH emission, and the flame ion field at the premix injector outlet and along the walls of the combustor. This instrumentation allows examination of the downstream extent of the combustion field using both the OH emission and the corresponding electron and ion distribution near the walls of the combustor. In most cases, the strongest pressure oscillation dominates the frequency behavior of the OH emission and the flame ion signals. Using this highly instrumented combustor, tests were run over a matrix of equivalence ratios from 0.6 to 0.8, with an inlet reference velocity of 25 m/s 82 ft/ s . The acoustics of the fuel system for the combustor were tuned using an active-passive technique with an adjustable quarter-wave resonator. Although several statistics were investigated for correlation with the dynamic pressure in the combustor, the best correlation was found with the standard deviation of the guard current. The data show a monotonic relationship between the standard deviation of the guard current (the current through the flame at the premix injector outlet) and the standard deviation of the chamber pressure. Therefore, the relationship between the standard deviation of the guard current and the standard deviation of the pressure is the most promising for monitoring the dynamic pressure of the combustor using the flame ionization signal. This addition to the capabilities of CCADS would allow for dynamic pressure monitoring on commercial gas turbines without a pressure transducer.},
doi = {10.1115/1.2431390},
journal = {Transactions of the ASME: Journal of Engineering for Gas Turbines and Power},
number = 2,
volume = 129,
place = {United States},
year = {Sun Apr 01 00:00:00 EDT 2007},
month = {Sun Apr 01 00:00:00 EDT 2007}
}
  • The influence of varying combustor pressure on flame oscillation and emission characteristics in the partially premixed turbulent flame were investigated. In order to investigate combustion characteristics in the partially premixed turbulent flame, the combustor pressure was controlled in the range of -30 to 30 kPa for each equivalence ratio ({phi} = 0.8-1.2). The r.m.s. of the pressure fluctuations increased with decreasing combustor pressure for the lean condition. The combustor pressure had a sizeable influence on combustion oscillation, whose dominant frequency varied with the combustor pressure. Combustion instabilities could be controlled by increasing the turbulent intensity of the unburned mixture undermore » the lean condition. An unstable flame was caused by incomplete combustion; hence, EICO greatly increased. Furthermore, EINO{sub x} simply reduced with decreasing combustor pressure at a rate of 0.035 g/10 kPa. The possibility of combustion control on the combusting mode and exhaust gas emission was demonstrated. (author)« less
  • Direct numerical simulations (DNS) are conducted in 3D to investigate the evolution of flame surface density (FSD) in turbulent premixed combustion. A parametric study is performed with respect to turbulent intensity and Lewis number to investigate all component terms in the FSD transport equation. A higher turbulent intensity leads to a higher turbulent burning velocity due to increased flame area, while the mean consumption speed remains close to the laminar flame speed. A lower Lewis number leads to a higher turbulent burning velocity, with increases in both total flame area and mean consumption speed. There are two source terms tomore » govern FSD: tangential strain and propagation term, given as a product of displacement speed and curvature. The mean strain rate varies linearly with the turbulent intensity, but shows no noticeable dependence on the Lewis number. The correlation between curvature and displacement speed does not depend on the turbulent intensity, but shows significant influence of the Lewis number. The propagation term decreases with increasing turbulent intensity to become a larger negative sink in the rear of flame brush with flame elements of smaller radii of curvature and higher displacement speeds. A lower Lewis number leads to a larger positive propagation term in the front due to an increased displacement speed to produce more flame area through diffusive thermal instability. (author)« less
  • An experimental work was performed to investigate the co-firing of pulverized coal and premixed gas/air streams in a double swirl combustor. The results showed that the NOx emissions are affected by the relative rates of thermal NOx formation and destruction via the pyrolysis of the fuel-N species in high temperature fuel-rich zones. Various burner designs were tested in order to vary the temperature history and the residence time across both coal and gas flames inside the furnace. It was found that by injecting the coal with a gas/air mixture as a combined central jet surrounded by a swirled air stream,more » a double flame envelope develops with high temperature fuel-rich conditions in between the two reaction zones such that the pyrolysis reactions to N{sub 2} are accelerated. A further reduction in the minimum NOx emissions, as well as in the minimum CO concentrations, was reported for the case where the coal particles are fed with the gas/air mixture in the region between the two swirled air streams. On the other hand, allocating the gas/air mixture around the swirled air-coal combustion zone provides an earlier contact with air and retards the NOx reduction mechanism in such a way that the elevated temperatures around the coal particles allow higher overall NOx emissions. The downstream impingement of opposing air jets was found more efficient than the impinging of particle non-laden premixed flames for effective NOx reduction. In both cases, there is an upstream flow from the stagnation region to the coal primary combustion region, but with the case of air impingement, the hot fuel-rich zone develops earlier. The optimum configuration was found by impinging all jets of air and coal-gas/air mixtures that pronounced minimum NOx and CO concentrations of 310 and 480ppm, respectively.« less
  • Two complementary simulations of premixed turbulent flames are discussed. Low Reynolds number two-dimensional direct numerical simulation of a premixed turbulent V flame is first performed, to further analyze the behavior of various flame quantities and to study key ingredients of premixed turbulent combustion modeling. Flame surface density, subgrid-scale variance of progress variables, and unresolved turbulent fluxes are analyzed. These simulations include fully detailed chemistry from a flame-generated tabulation (FPI) and the analysis focuses on the dynamics of the thin flame front. Then, a novel subgrid scale closure for large eddy simulation of premixed turbulent combustion (FSD-PDF) is proposed. It combinesmore » the flame surface density (FSD) approach with a presumed probability density function (PDF) of the progress variable that is used in FPI chemistry tabulation. The FSD is useful for introducing in the presumed PDF the influence of the spatially filtered thin reaction zone evolving within the subgrid. This is achieved via the exact relation between the PDF and the FSD. This relation involves the conditional filtered average of the magnitude of the gradient of the progress variable. In the modeling, this conditional filtered mean is approximated from the filtered gradient of the progress variable of the FPI laminar flame. Balance equations providing mean and variance of the progress variable together with the measure of the filtered gradient are used to presume the PDF. A three-dimensional larger Reynolds number flow configuration (ORACLES experiment) is then computed with FSD-PDF and the results are compared with measurements.« less
  • In this paper, a 2-dimensional rod-stabilized V-shaped flame is simulated using contour advection with surgery as well as the random vortex method. Effects of turbulence on various quantities, such as flame brush thickness and flame surface density, are investigated. The flame surface density S is estimated using the Bray-Moss-Libby formulation, which involves the use of a mean orientation factor {sigma}{sub c}. As a comparison, values of S are also obtained using Shepherd's model, which employs the values of mean flame surface area and mean flame length. Local flame structure is characterized in terms of turbulent flame brush, orientation factor, andmore » flame surface density. Profiles of S obtained using the two different models are compared and show that discrepancy is more evident with increasing turbulence intensity. (author)« less