Surface Segregation in a PdCu Alloy Hydrogen Separation Membrane
Separation of hydrogen from mixed gas streams is an important step for hydrogen generation technologies, including hydrocarbon reforming and coal/biomass gasification. Dense palladium-based membranes have received significant attention for this application because of palladium’s ability to dissociatively adsorb molecular hydrogen at its surface for subsequent transport of hydrogen atoms through its bulk. Alloying palladium with minor components, like copper, has been shown to improve both the membrane’s structural characteristics and resistance to poisoning of its catalytic surface [1]. Surface segregation—a composition difference between the bulk material and its surface—is common in alloys and can affect important surface processes. Rational design of alloy membranes requires that surface segregation be understood, and possibly controlled. In this work, we examine surface segregation in a polycrystalline Pd70Cu30 hydrogen separation membrane as a function of thermal treatment and adsorption of hydrogen sulfide.
- Research Organization:
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)
- Sponsoring Organization:
- USDOE - Office of Fossil Energy (FE)
- OSTI ID:
- 915575
- Report Number(s):
- DOE/NETL-IR-2007-165
- Country of Publication:
- United States
- Language:
- English
Similar Records
Surface Segregation in a Polycrystalline Palladium-Copper Alloy
FUEL 254: Activation of molecular hydrogen on palladium separation membrane surfaces in the presence of H2S