skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carrier density dependent lattice stability in InSb.

Abstract

No abstract prepared.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; « less
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC); Uppsala Univ.; Swedish Research Council (SRC); W. M. Keck Foundation; German Research Foundation (DFG); European Commission (EC); Wallenberg Research Link; The Swedish Foundation for Strategic Research
OSTI Identifier:
914873
Report Number(s):
ANL/MSD/JA-57835
Journal ID: ISSN 0031-9007; PRLTAO; TRN: US200812%%120
DOE Contract Number:
DE-AC02-06CH11357
Resource Type:
Journal Article
Resource Relation:
Journal Name: Phys. Rev. Lett.; Journal Volume: 98; Journal Issue: 125501 ; Mar 23, 2007
Country of Publication:
United States
Language:
ENGLISH
Subject:
36 MATERIALS SCIENCE; CARRIER DENSITY; STABILITY; CRYSTAL LATTICES; INDIUM ALLOYS; ANTIMONY ALLOYS

Citation Formats

Hillyard, P. B., Gaffney, K. ., Lindenberg, A. M., Engemann, S., Fritz, D. M., Rudati, J., Fuoss, P. H., Stanford Univ., Stanford Linear Accelerator Ctr., SLAC, Univ. Michigan, Universitat Duisberg-Essen, Lund Inst. Tech., Deutsches Elektronen-Synchrotron, Univ. California-Berkeley, Max-Planck-Inst. Quantum Optics, Lawrence Livermore Nat. Lab., NSLS, Brookhaven Nat. Lab., Univ. Chicago, and Uppsala Univ. Carrier density dependent lattice stability in InSb.. United States: N. p., 2007. Web. doi:10.1103/PhysRevLett.98.125501.
Hillyard, P. B., Gaffney, K. ., Lindenberg, A. M., Engemann, S., Fritz, D. M., Rudati, J., Fuoss, P. H., Stanford Univ., Stanford Linear Accelerator Ctr., SLAC, Univ. Michigan, Universitat Duisberg-Essen, Lund Inst. Tech., Deutsches Elektronen-Synchrotron, Univ. California-Berkeley, Max-Planck-Inst. Quantum Optics, Lawrence Livermore Nat. Lab., NSLS, Brookhaven Nat. Lab., Univ. Chicago, & Uppsala Univ. Carrier density dependent lattice stability in InSb.. United States. doi:10.1103/PhysRevLett.98.125501.
Hillyard, P. B., Gaffney, K. ., Lindenberg, A. M., Engemann, S., Fritz, D. M., Rudati, J., Fuoss, P. H., Stanford Univ., Stanford Linear Accelerator Ctr., SLAC, Univ. Michigan, Universitat Duisberg-Essen, Lund Inst. Tech., Deutsches Elektronen-Synchrotron, Univ. California-Berkeley, Max-Planck-Inst. Quantum Optics, Lawrence Livermore Nat. Lab., NSLS, Brookhaven Nat. Lab., Univ. Chicago, and Uppsala Univ. Fri . "Carrier density dependent lattice stability in InSb.". United States. doi:10.1103/PhysRevLett.98.125501.
@article{osti_914873,
title = {Carrier density dependent lattice stability in InSb.},
author = {Hillyard, P. B. and Gaffney, K. . and Lindenberg, A. M. and Engemann, S. and Fritz, D. M. and Rudati, J. and Fuoss, P. H. and Stanford Univ. and Stanford Linear Accelerator Ctr. and SLAC and Univ. Michigan and Universitat Duisberg-Essen and Lund Inst. Tech. and Deutsches Elektronen-Synchrotron and Univ. California-Berkeley and Max-Planck-Inst. Quantum Optics and Lawrence Livermore Nat. Lab. and NSLS and Brookhaven Nat. Lab. and Univ. Chicago and Uppsala Univ.},
abstractNote = {No abstract prepared.},
doi = {10.1103/PhysRevLett.98.125501},
journal = {Phys. Rev. Lett.},
number = 125501 ; Mar 23, 2007,
volume = 98,
place = {United States},
year = {Fri Mar 23 00:00:00 EDT 2007},
month = {Fri Mar 23 00:00:00 EDT 2007}
}
  • No abstract prepared.
  • Single-crystal natural diamonds have been intrinsically photoexcited using 2 ps laser pulses. Electron and hole mobilities and decay times are examined as a function of induced carrier density. Two major density dependent effects are observed. First, at high induced carrier densities, a dramatic decrease in the carrier mobility is observed. This is attributed to carrier-carrier scattering between the electrons and the holes. A model describing carrier-carrier scattering in silicon and germanium has been scaled to diamond. Second, the decay time of the electrons decreases as the initially photoexcited density increases. A simple one-level recombination model successfully explains this density dependence.more » The combination of these two effects results in a minimum in the measured photoconductive decay times.« less
  • We investigate the surface electronic structure and thermodynamic stability of the SrTiO3 (111) slabs using density functional theory. We observe that, for Ti-terminated slabs it is indeed possible to create a two-dimensional electron gas (2DEG). However, the carrier density of the 2DEG displays a strong thickness dependence due to the competition between electronic reconstruction and polar distortions. As expected, having a surface oxygen atom at the Ti termination can stabilize the system, eliminating any electronic reconstruction, thereby making the system insulating. An analysis of the surface thermodynamic stability suggests that the Ti terminated (111) surface should be experimentally realizable. Thismore » surface may be useful for exploring the behavior of electrons in oxide (111) interfaces and may have implications for modern device applications.« less