skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystal Structures of Nitroalkane Oxidase: Insights into the Reaction Mechanism of a Covalent Complex of the Flavoenzyme Trapped During Turnover

Abstract

Nitroalkane oxidase (NAO) from Fusarium oxysporum catalyzes the oxidation of neutral nitroalkanes to the corresponding aldehydes or ketones with the production of H2O2 and nitrite. The flavoenzyme is a new member of the acyl-CoA dehydrogenase (ACAD) family, but it does not react with acyl-CoA substrates. We present the 2.2 Angstroms resolution crystal structure of NAO trapped during the turnover of nitroethane as a covalent N5-FAD adduct (ES*). The homotetrameric structure of ES* was solved by MAD phasing with 52 Se-Met sites in an orthorhombic space group. The electron density for the N5-(2-nitrobutyl)-1,5-dihydro-FAD covalent intermediate is clearly resolved. The structure of ES* was used to solve the crystal structure of oxidized NAO at 2.07 Angstroms resolution. The c axis for the trigonal space group of oxidized NAO is 485 Angstroms, and there are six subunits (11/2 holoenzymes) in the asymmetric unit. Four of the active sites contain spermine (EI), a weak competitive inhibitor, and two do not contain spermine (E{sup ox}). The active-site structures of E{sup ox}, EI, and ES* reveal a hydrophobic channel that extends from the exterior of the protein and terminates at Asp402 and the N5 position on the re face of the FAD. Thus, Asp402 is inmore » the correct position to serve as the active-site base, where it is proposed to abstract the {alpha} proton from neutral nitroalkane substrates. The structures for NAO and various members of the ACAD family overlay with root-mean-square deviations between 1.7 and 3.1 Angstroms. The homologous region typically spans more than 325 residues and includes Glu376, which is the active-site base in the prototypical member of the ACAD family. However, NAO and the ACADs exhibit differences in hydrogen-bonding patterns between the respective active-site base, substrate molecules, and FAD. These likely differentiate NAO from the homologues and, consequently, are proposed to result in the unique reaction mechanism of NAO.« less

Authors:
; ; ;
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL) National Synchrotron Light Source
Sponsoring Org.:
Doe - Office Of Science
OSTI Identifier:
914312
Report Number(s):
BNL-78880-2007-JA
Journal ID: ISSN 0006-2960; TRN: US200809%%169
DOE Contract Number:
DE-AC02-98CH10886
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemistry; Journal Volume: 45
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CRYSTAL STRUCTURE; ELECTRON DENSITY; OXIDASES; REACTION KINETICS; SPACE GROUPS; national synchrotron light source

Citation Formats

Nagpal,A., Valley, M., Fitzpatrick, P., and Orville, A.. Crystal Structures of Nitroalkane Oxidase: Insights into the Reaction Mechanism of a Covalent Complex of the Flavoenzyme Trapped During Turnover. United States: N. p., 2006. Web. doi:10.1021/bi051966w.
Nagpal,A., Valley, M., Fitzpatrick, P., & Orville, A.. Crystal Structures of Nitroalkane Oxidase: Insights into the Reaction Mechanism of a Covalent Complex of the Flavoenzyme Trapped During Turnover. United States. doi:10.1021/bi051966w.
Nagpal,A., Valley, M., Fitzpatrick, P., and Orville, A.. Sun . "Crystal Structures of Nitroalkane Oxidase: Insights into the Reaction Mechanism of a Covalent Complex of the Flavoenzyme Trapped During Turnover". United States. doi:10.1021/bi051966w.
@article{osti_914312,
title = {Crystal Structures of Nitroalkane Oxidase: Insights into the Reaction Mechanism of a Covalent Complex of the Flavoenzyme Trapped During Turnover},
author = {Nagpal,A. and Valley, M. and Fitzpatrick, P. and Orville, A.},
abstractNote = {Nitroalkane oxidase (NAO) from Fusarium oxysporum catalyzes the oxidation of neutral nitroalkanes to the corresponding aldehydes or ketones with the production of H2O2 and nitrite. The flavoenzyme is a new member of the acyl-CoA dehydrogenase (ACAD) family, but it does not react with acyl-CoA substrates. We present the 2.2 Angstroms resolution crystal structure of NAO trapped during the turnover of nitroethane as a covalent N5-FAD adduct (ES*). The homotetrameric structure of ES* was solved by MAD phasing with 52 Se-Met sites in an orthorhombic space group. The electron density for the N5-(2-nitrobutyl)-1,5-dihydro-FAD covalent intermediate is clearly resolved. The structure of ES* was used to solve the crystal structure of oxidized NAO at 2.07 Angstroms resolution. The c axis for the trigonal space group of oxidized NAO is 485 Angstroms, and there are six subunits (11/2 holoenzymes) in the asymmetric unit. Four of the active sites contain spermine (EI), a weak competitive inhibitor, and two do not contain spermine (E{sup ox}). The active-site structures of E{sup ox}, EI, and ES* reveal a hydrophobic channel that extends from the exterior of the protein and terminates at Asp402 and the N5 position on the re face of the FAD. Thus, Asp402 is in the correct position to serve as the active-site base, where it is proposed to abstract the {alpha} proton from neutral nitroalkane substrates. The structures for NAO and various members of the ACAD family overlay with root-mean-square deviations between 1.7 and 3.1 Angstroms. The homologous region typically spans more than 325 residues and includes Glu376, which is the active-site base in the prototypical member of the ACAD family. However, NAO and the ACADs exhibit differences in hydrogen-bonding patterns between the respective active-site base, substrate molecules, and FAD. These likely differentiate NAO from the homologues and, consequently, are proposed to result in the unique reaction mechanism of NAO.},
doi = {10.1021/bi051966w},
journal = {Biochemistry},
number = ,
volume = 45,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}
  • The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 {angstrom} resolution or better of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct are described. The D402N enzyme has no detectable activity with neutral nitroalkanes. The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. Themore » oxygens of the substrate nitro group interact both with amino acid residues and with the 2'-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped (Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062-2066). The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2'-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle.« less
  • Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD{sup +} in most prokaryotes and most single-cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD{sup +} homeostasis has stimulated interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD{sup +}-consuming enzymes, such as the NAD{sup +}-dependent deacetylases (sirtuins). Here, we report several high-resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. Themore » structure of the C136S mutant in complex with nicotinamide provides details about substrate binding, while a trapped nicotinoyl thioester in a complex with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features, including a metal ion that coordinates the substrate and the catalytically relevant water molecule and an oxyanion hole that both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence of several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme.« less
  • No abstract prepared.