X-shaped Electro-Optic Chromophore with Remarkably Blue-Shifted Optical Absorption. Synthesis, Characterization, Linear/Nonlinear Optical Properties, Self-Assembly, and Thin Film Microstructural Characteristics
A novel type of 'X-shaped' two-dimensional electro-optic (EO) chromophore with extended conjugation has been synthesized and characterized. This chromophore is found to exhibit a remarkably blue-shifted optical maximum (357 nm in CH{sub 2}Cl{sub 2}) while maintaining a very large first hyperpolarizability ({beta}). Hyper-Rayleigh Scattering (HRS) measurements at 800 nm provide a {beta}{sub zzz} value of 1840 x 10{sup -30} esu. Self-assembled thin films of this chromophore were fabricated via a layer-by-layer chemisorptive siloxane-based approach. The chromophoric multilayers have been characterized by transmission optical spectroscopy, advancing contact angle measurements, synchrotron X-ray reflectivity, atomic force microscopy, and angle-dependent polarized second harmonic generation spectroscopy. The self-assembled chromophoric films exhibit a dramatically blue-shifted optical maximum (325 nm) while maintaining a large EO response ({chi}({sup 2}){sub 333} {approx} 232 pm/V at 1064 nm; r{sub 33} {approx} 45 pm/V at 1310 nm). This work demonstrates an attractive approach to developing EO materials offering improved nonlinearity-transparency trade-offs.
- Research Organization:
- Brookhaven National Laboratory (BNL) National Synchrotron Light Source
- Sponsoring Organization:
- Doe - Office Of Science
- DOE Contract Number:
- AC02-98CH10886
- OSTI ID:
- 914249
- Report Number(s):
- BNL--78817-2007-JA
- Journal Information:
- J. Am. Chem. Soc., Journal Name: J. Am. Chem. Soc. Vol. 128; ISSN JACSAT; ISSN 0002-7863
- Country of Publication:
- United States
- Language:
- English
Similar Records
Control of the Orientational Order and Nonlinear Optical Response of the “Push−Pull” Chromophore RuPZn via Specific Incorporation into Densely Packed Monolayer Ensembles of an Amphiphilic 4-Helix Bundle Peptide: Second Harmonic Generation at High Chromophore Densities
The Roles of Molecular Structure and Effective Optical Symmetry in Evolving Dipolar Chromophoric Building Blocks to Potent Octopolar Nonlinear Optical Chromophores