skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: X-ray, NMR, and Mutational Studies of the Catalytic Cycle of the GDP-Mannose Mannosyl Hydrolase Reaction

Journal Article · · Biochemistry
DOI:https://doi.org/10.1021/bi061239g· OSTI ID:914032

GDP-mannose hydrolase catalyzes the hydrolysis with inversion of GDP-{alpha}-D-hexose to GDP and {beta}-D-hexose by nucleophilic substitution by water at C1 of the sugar. Two new crystal structures (free enzyme and enzyme-substrate complex), NMR, and site-directed mutagenesis data, combined with the structure of the enzyme-product complex reported earlier, suggest a four-stage catalytic cycle. An important loop (L6, residues 119-125) contains a ligand to the essential Mg{sup 2+} (Gln-123), the catalytic base (His-124), and three anionic residues. This loop is not ordered in the X-ray structure of the free enzyme due to dynamic disorder, as indicated by the two-dimensional 1H-15N HMQC spectrum, which shows selective exchange broadening of the imidazole nitrogen resonances of His-124 (k{sub ex} = 6.6 x 10{sup 4} s{sup -1}). The structure of the enzyme-Mg{sup 2+}-GDP-mannose substrate complex of the less active Y103F mutant shows loop L6 in an open conformation, while the structure of the enzyme-Mg{sup 2+}-GDP product complex showed loop L6 in a closed, 'active' conformation. 1H-15N HMQC spectra show the imidazole N of His-124 to be unprotonated, appropriate for general base catalysis. Substituting Mg{sup 2+} with the more electrophilic metal ions Mn{sup 2+} or Co{sup 2+} decreases the pK{sub a} in the pH versus k{sub cat} rate profiles, showing that deprotonation of a metal-bound water is partially rate-limiting. The H124Q mutation, which decreases k{sub cat} 103.4-fold and largely abolishes its pH dependence, is rescued by the Y103F mutation, which increases k{sub cat} 23-fold and restores its pH dependence. The structural basis of the rescue is the fact that the Y103F mutation shifts the conformational equilibrium to the open form moving loop L6 out of the active site, thus permitting direct access of the specific base hydroxide from the solvent. In the proposed dissociative transition state, which occurs in the closed, active conformation of the enzyme, the partial negative charge of the GDP leaving group is compensated by the Mg2+, and by the closing of loop L2 that brings Arg-37 closer to the -phosphate. The development of a positive charge at mannosyl C1, as the oxocarbenium-like transition state is approached, is compensated by closing the anionic loop, L6, onto the active site, further stabilizing the transition state.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
Sponsoring Organization:
Doe - Office Of Science
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
914032
Report Number(s):
BNL-78600-2007-JA; BICHAW; TRN: US200804%%446
Journal Information:
Biochemistry, Vol. 45; ISSN 0006-2960
Country of Publication:
United States
Language:
English