skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Acetone Oxidation using Ozone on Manganese Oxide Catalysts

Journal Article · · J. Phys. Chem. B
DOI:https://doi.org/10.1021/jp052930g· OSTI ID:913818

Supported manganese oxide catalysts were prepared by the impregnation of alumina foam blocks washcoated with alumina and silica. The manganese content based on the weight of the washcoats was 10 wt % calculated as MnO{sub 2}. Fourier transform profiles of the Mn K-edge EXAFS spectra for these samples gave three distinctive peaks at 0.15, 0.25, and 0.32 nm and were close to the profiles of Mn{sub 3}O{sub 4} and {beta}-MnO{sub 2}. The number of surface active sites was determined through oxygen chemisorption measurements at a reduction temperature (T{sub red} = 443 K) obtained from temperature-programmed reduction (TPR) experiments. Acetone catalytic oxidation was studied from room temperature to 573 K, and was found to be highly accelerated by the use of ozone on both catalysts with substantial reductions in the reaction temperature. The only carbon-containing product detected was CO{sub 2}. The alumina-supported catalyst was found to be more active than the silica-supported catalyst in acetone and ozone conversion, with higher turnover frequencies (TOFs) for both reactions. The pressure drop through the foam was low and increased little (0.003 kPa/10 000 h{sup -1}) with space velocity. In situ steady-state Raman spectroscopy measurements during the acetone catalytic oxidation reaction showed the presence of an adsorbed acetone species with a C-H bond at 2930 cm{sup -1} and a peroxide species derived from ozone with an O-O bond at 890 cm{sup -1}.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
Sponsoring Organization:
Doe - Office Of Science
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
913818
Report Number(s):
BNL-78386-2007-JA; JCPBFK; TRN: US200804%%86
Journal Information:
J. Phys. Chem. B, Vol. 109; ISSN 1089-5647
Country of Publication:
United States
Language:
English