Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Gas Permeability and Ideal Selectivity of Poly[bis-(phenoxy)phosphazene], Poly[bis-(4-tert-butylphenoxy)phosphazene], and Poly[bis-(3,5-di-tert-butylphenoxy)1.2(chloro)0.8phosphazene]

Journal Article · · Journal of Membrane Science

Described in this paper is the synthesis and gas permeability characterization of poly[bis-(4-tert-butylphenoxy)phosphazene], and poly[bis-(3,5-di-tert-butylphenoxy)1.2(chloro)0.8phosphazene]. In general, linear chloro-containing polyphosphazenes are hydrolytically unstable. However, in this work, a novel polymer, poly[bis-(3,5-di-tert-butylphenoxy)1.2(chloro)0.8phosphazene], was observed to have an unusually high degree of hydrolytic stability and excellent membrane formation characteristics. Data derived from these polymers were compared to that of the more common poly[(bis-phenoxy)phosphazene]. These comparisons showed higher gas permeabilities and ideal separation factors for both of the alkyl-substituted phenoxy-phosphazenes, thus validating the concept that adding sterically bulky pendant groups to phosphazenes can affect membrane performance through disruption of orderly chain packing. Chemical characterization of these polymers was conducted using NMR spectroscopy, thermal analysis, helium pycnometry, elemental analysis, and multi-angle laser light scattering. Membranes were formed by solution casting and were characterized for their pure gas permeability using the following gases: H2, Ar, N2, O2, CH4, CO2, and H2S. Additionally, ideal selectivities of the significant O2/N2 and CO2/CH4 gas pairs are discussed.

Research Organization:
Idaho National Laboratory (INL)
Sponsoring Organization:
DOE - SC
DOE Contract Number:
AC07-99ID13727
OSTI ID:
912220
Report Number(s):
INEEL/JOU-03-00996
Journal Information:
Journal of Membrane Science, Journal Name: Journal of Membrane Science Journal Issue: 1-2 Vol. 238; ISSN 0376-7388; ISSN JMESDO
Country of Publication:
United States
Language:
English