skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of the Potential for 90Sr Immobilization in INTEC Perched Water via Microbially Facilitated Calcite Precipitation

Technical Report ·
DOI:https://doi.org/10.2172/911864· OSTI ID:911864

The goal of this work is to evaluate the applicability of a biogeochemical sequestration approach for remediation of 90Sr contamination in perched water zones underlying the Idaho Nuclear Technology and Engineering Center (INTEC). The approach is based on the accelerated co-precipitation of the contaminant in calcite, where the acceleration is catalyzed by the microbial urea hydrolysis. We have previously demonstrated the potential for this remediation mechanism to immobilize strontium. Urea hydrolysis promotes calcite precipitation (and trace metal co-precipitation) by increasing groundwater pH and alkalinity. Ureolysis is catalyzed by the urease enzyme, which is produced by many environmental microorganisms. In the Snake River Plain Aquifer, which is saturated with respect to calcite, any co-precipitated 90Sr should be effectively sequestered over the long-term, even after return to pre-manipulation conditions. Another advantage of the ureolysis approach is that the NH4+ ions produced by the reaction can exchange with cations sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture via a more stable mechanism (co-precipitation rather than adsorption).

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC07-99ID-13727
OSTI ID:
911864
Report Number(s):
INL/EXT-06-11896; TRN: US200801%%298
Country of Publication:
United States
Language:
English