Laser Acoustic Molten Metal Depth Sensing in Titanium
A noncontacting ultrasonic method has been investigated for probing the solidification front in molten titanium for the purposes of profiling the channel depth in plasma hearth re-melter. The method, known as Laser Ultrasonics, utilized a pulsed laser for generation of ultrasonic waves at the surface of a molten metal pool. The ultrasonic waves propagated into the liquid titanium reflected from the solidification front and the boundaries of the solid plug. A Fabry-Perot interferometer, driven by a second laser, demodulated the small displacements caused by the ultrasonic wave motion at the liquid surface. The method and results of measurements taken within a small research plasma melting furnace will be described. Successful results were obtained even directly beneath the plasma arc using this all optical approach.
- Research Organization:
- Idaho National Laboratory (INL)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC07-99ID13727
- OSTI ID:
- 911382
- Report Number(s):
- INEEL/CON-99-00027
- Country of Publication:
- United States
- Language:
- English
Similar Records
Laser ultrasonic monitoring of molten metal processes
Laser ultrasonic monitoring of ceramic sintering