skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SCDAP/RELAP5 Evaluation of the Potential for Steam Generator Tube Ruptures as a Result of Severe Accidents in Operating PWRs

Technical Report ·
DOI:https://doi.org/10.2172/911021· OSTI ID:911021

Natural circulation flows can develop within a reactor coolant system (RCS) during certain severe reactor accidents, transferring decay energy from the core to other parts of the RCS. The associated heatup of RCS structures can lead to pressure boundary failures; with notable vulnerabilities in the pressurizer surge line, the hot leg nozzles, and the steam generator (SG) tubes. The potential for a steam generator tube rupture (SGTR) is of particular concern because fission products could be released to the environment through such a failure. The Nuclear Regulatory Commission (NRC) developed a program to address SG tube integrity issues in operating pressurized water reactors (PWRs) based on the possibility for environmental release. An extensive effort to evaluate the potential for accident-induced SGTRs using SCDAP/RELAP5 at the Idaho National Engineering and Environmental Laboratory (INEEL) was directed as one part of the NRC program. All SCDAP/RELAP5 calculations performed during the INEEL evaluation were based on station blackout accidents (and variations thereof) because those accidents are considered to be one of the more likely scenarios leading to natural circulation flows at temperatures and pressures that could threaten SG tube integrity (as well as the integrity of other vulnerable RCS pressure boundaries). Variations that were addressed included consideration of the effects of RCP seal leaks, intentional RCS depressurization through pressurizer PORVs, SG secondary depressurization, DC-HL bypass flows, U-tube SG sludge accumulation, and quenching of upper plenum stainless steel upon relocation to the lower head. Where available, experimental data was used to guide simulation of natural circulation flows. Independent reviews of the applicability of the natural circulation experimental data, the suitability of the code, and the adequacy of the modeling were completed and review recommendations were incorporated into the evaluation within budget and schedule limitations.

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC07-99ID-13727
OSTI ID:
911021
Report Number(s):
INEEL/EXT-98-00286; TRN: US0704345
Country of Publication:
United States
Language:
English