skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On-Going Comparison of Advanced Fuel Cycle Options

Conference ·
OSTI ID:910827

The Advanced Fuel Cycle Initiative (AFCI) program is addressing key issues associated with critical national needs. This paper compares the major options with these major “outcome” objectives - waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety as well as “process” objectives associated with readiness to proceed and adaptability and robustness in the face of uncertainties. Working together, separation, transmutation, and fuel technologies provide complete energy systems that can improve waste management compared to the current “once-through/no separation” approach. Future work will further increase confidence in potential solutions, optimize solutions for the mixtures of objectives, and develop attractive development and deployment paths for selected options. This will allow the nation to address nearer-term issues such as avoiding the need for additional geological repositories while making nuclear energy a more sustainable energy option for the long-term. While the Generation IV Initiative is exploring multiple reactor options for future nuclear energy for both electricity generation and additional applications, the AFCI is assessing fuel cycles options for either a continuation or expansion of nuclear energy in the United States. This report compares strategies and technology options for managing the associated spent fuel. There are four major potential strategies, as follows: · The current U.S. strategy is once through: standard nuclear power plants, standard fuel burnup, direct geological disposal of spent fuel. Variants include higher burnup fuels in water-cooled power plants, once-through gas-cooled power plants, and separation (without recycling) of spent fuel to reduce the number and cost of geological waste packages. · The second strategy is thermal recycle, recycling some fuel components in thermal reactors. This strategy extends the useful life of the geologic repository, producing energy from the fissile transuranics in spent fuel while reducing plutonium. · The third strategy is thermal+fast recycle. The difference from the second strategy is that more components of spent fuel can be recycled to reduce both fissile and non-fissile transuranics, but at the cost of developing and deploying at least one fast reactor or accelerator driven system. A mix of thermal and fast reactors would implement this strategy. · The fourth strategy is pure fast recycle; fuel would not be recycled in thermal reactors, which would be phased out in favor of deploying fast spectrum power reactors.

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
DOE - NE
DOE Contract Number:
DE-AC07-99ID-13727
OSTI ID:
910827
Report Number(s):
INEEL/CON-04-01961; TRN: US0800559
Resource Relation:
Conference: Americas Nuclear Energy Symposium 2004,Miami Beach, Florida,10/03/2004,10/06/2004
Country of Publication:
United States
Language:
English