Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

CALIBRATION AND TESTING OF A LARGE-AREA FAST-NEUTRON DIRECTIONAL DETECTOR.

Conference ·
OSTI ID:909968
We have developed a new directional fast-neutron detector based on double proton recoil in two separated planes of plastic scintillators with position-sensitive readout. This method allows the energy spectrum of the neutrons to be measured by a combination of peak amplitude in the first plane and time of flight to the second plane. The planes are made up of 1-m long, 10-cm high paddles with photomultipliers at both ends, so that the location of an event along the paddle can be estimated from the time delay between the optical pulses detected at the two ends. The direction of the scattered neutron can be estimated from the locations of two time-correlated events in the two planes, and the energy lost in the first scattering event can be estimated from the pulse amplitude in the first plane. The direction of the incident neutron can then be determined to lie on a cone whose angle is determined by the kinematic equations. The superposition of many such cones generates an image that indicates the presence of a localized source. Setting upper and lower limits on the time of flight allows discrimination between gamma rays, muons and neutrons. Monte Carlo simulations were performed to determine the expected angular resolution and efficiency. These models show that the lower energy limit for useful directional events is about 100 keV, because lower energy neutrons are likely to scatter more than once in the first plane. Placing a shadow bar in front of the detector provides an alternative way to obtain the direction to a point source, which may require fewer events. This method also can provide dual capability as a directional gamma detector.
Research Organization:
Brookhaven National Laboratory
Sponsoring Organization:
Doe - National Nuclear Security Administration
DOE Contract Number:
AC02-98CH10886
OSTI ID:
909968
Report Number(s):
BNL--77998-2007-CP; NN2001030
Country of Publication:
United States
Language:
English