Signal-to-Noise Behavior for Matches to Gradient Direction Models of Corners in Images
Gradient direction models for corners of prescribed acuteness, leg length, and leg thickness are constructed by generating fields of unit vectors emanating from leg pixels that point normal to the edges. A novel FFT-based algorithm that quickly matches models of corners at all possible positions and orientations in the image to fields of gradient directions for image pixels is described. The signal strength of a corner is discussed in terms of the number of pixels along the edges of a corner in an image, while noise is characterized by the coherence of gradient directions along those edges. The detection-false alarm rate behavior of our corner detector is evaluated empirically by manually constructing maps of corner locations in typical overhead images, and then generating different ROC curves for matches to models of corners with different leg lengths and thicknesses. We then demonstrate how corners found with our detector can be used to quickly and automatically find families of polygons of arbitrary position, size and orientation in overhead images.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 908105
- Report Number(s):
- UCRL-CONF-228119
- Country of Publication:
- United States
- Language:
- English
Similar Records
Weighted Model Components for Gradient Direction Matching in Overhead Images
Detection of Laser Optic Defects Using Gradient Direction Matching