Modeling the transverse thermal conductivity of 3D-SICF/ SIC composites
Our previously developed hierarchical two-layer (H2L) model was modified to describe the effective transverse thermal conductivity (Keff) of a three-dimensional (3D) SiC/SiC composite plate made with cross-layered and Z-stitched X:Y:Z uniaxial fiber tow sub-units. As before, the model describes Keff in terms of constituent, microstructural and architectural properties that include the expected effects of fiber-matrix interfacial conductance, of high fiber packing fractions within individual tow sub-units and of the non-uniform porosity contents, shapes and orientations within these sub-units. Model predictions were obtained for two versions of a 3D-Tyranno SA/PyC/ICVI-SiC composite that had similar fiber/matrix pyrocarbon (PyC) interfaces, relatively high bulk densities (~2.88 g/cc), and an X:Y configuration with fiber content ratios 1:1. The only major difference between the two versions was their Z-stitch fiber content where the relative fiber ratios were 0.1 and 1.2 in the Z sub-units.
- Research Organization:
- Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC05-76RL01830
- OSTI ID:
- 907945
- Report Number(s):
- PNNL-SA-42832; AT6020100
- Country of Publication:
- United States
- Language:
- English
Similar Records
Modeling the Transverse Thermal Conductivity of 2-D SiCf/SiC Composites Made with Woven Fabric
Modeling the Transverse Thermal Conductivity of 2-D SiC{sub f} /SiC Composites Made with Woven Fabric