Large-eddy simulation of round turbulent jets using the Inertial LES method with multifractal subgrid-scale modeling
Large-eddy simulation of passive scalar mixing by a fully three-dimensional round incompressible turbulent jet is evaluated using the Inertial LES methodology with multifractal subgrid-scale modeling. The Inertial LES approach involves the direct calculation of the inertial term {ovr u{sub i} u{sub j}} in the filtered incompressible Navier-Stokes equation and the scalar flux term {ovr u{sub j} {phi}} in the filtered advection-diffusion equation, using models for the subgrid velocity field u{sup sgs} and the subgrid scalar-concentration field {phi}{sup sgs}. In this work, the models are based on the multifractal structure of the subgrid enstrophy 2Q{sup sgs}(x,t) {triple_bond} {omega}{sup sgs} {center_dot} {omega}{sup sgs} and scalar-dissipation {chi}{sup sgs} (x,t) {triple_bond} D{del}{phi}{sup sgs} {center_dot} {del}{phi}{sup sgs} fields, respectively. No artificial viscosity or diffusivity constructs are applied and no explicit dealiasing is performed. Numerical errors are controlled by the application of an adaptive backscatter limiter. The present work summarizes the initial evaluation of the Inertial LES approach in the context of the round turbulent jet, including examinations of jet self-similarity and the scale-to-scale distribution of kinetic and scalar energy in the jet far field. These inquiries confirm that the Inertial LES method accurately recovers the large scale structure of this complex turbulent shear flow.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 902263
- Report Number(s):
- UCRL-CONF-227154
- Country of Publication:
- United States
- Language:
- English
Similar Records
Modeling subgrid scale mixture fraction variance in LES of evaporating spray
A dynamic spectrally enriched subgrid-scale model for preferential concentration in particle-laden turbulence